首頁 資訊 Function and Application of Probiotics in Pig Breeding

Function and Application of Probiotics in Pig Breeding

來源:泰然健康網(wǎng) 時(shí)間:2025年08月06日 10:22

摘要: 益生菌是一類微生物制劑,其代替抗生素作為新型飼料添加劑廣泛應(yīng)用于農(nóng)業(yè)領(lǐng)域。本文結(jié)合國(guó)內(nèi)外最新研究進(jìn)展,綜述了益生菌對(duì)豬腸道健康、營(yíng)養(yǎng)利用、應(yīng)激的影響以及在生豬養(yǎng)豬業(yè)的應(yīng)用,旨在為益生菌在生豬養(yǎng)殖中的深度發(fā)掘及推廣提供理論參考。

Abstract: Probiotics is one kind of microbiological preparations, which is widely used a feed additive and alternative to antibiotics in the field of agriculture. Combined with the latest domestic and abroad research, this article reviews several aspects including the effects of probiotics on intestinal health, nutrient utilization and stress, and its application in pig breeding. The aim of this article is to provide theoretical reference for the deep excavation and application of probiotics a feed additive in pig breeding.

我國(guó)是生豬養(yǎng)殖大國(guó),也是抗生素生產(chǎn)及使用大國(guó),每年用于動(dòng)物養(yǎng)殖產(chǎn)業(yè)的抗生素多達(dá)9.7 t,因此養(yǎng)殖業(yè)是抗生素濫用的重災(zāi)區(qū)??股卦陴B(yǎng)殖業(yè)的使用不僅影響其在肉產(chǎn)品中的殘留,也造成人類對(duì)抗生素耐藥性,因此抗生素的濫用影響動(dòng)物生產(chǎn)及人類健康。為提升消費(fèi)者對(duì)畜牧產(chǎn)品的信賴,農(nóng)業(yè)部擬計(jì)劃全面禁止抗生素作為飼料添加劑在動(dòng)物生產(chǎn)中應(yīng)用。

根據(jù)國(guó)內(nèi)外減少或禁用抗生素使用的發(fā)展趨勢(shì),抗生素替代的研究越來越多,其中益生菌作為抗生素替代物已在多國(guó)使用。美國(guó)食品與藥品管理局以及飼料管理協(xié)會(huì)已公布可直接飼喂且安全的益生菌已有40余種,歐盟市面已有50余種益生菌,我國(guó)農(nóng)業(yè)部第105號(hào)公告允許使用干酪乳桿菌(Lactobacillus casei)、植物乳桿菌(Lactobacillus plantarum)、糞鏈球菌(Streptococcus faecalis)、屎鏈球菌(Streptococcus faecium)、乳酸片球菌(Pediococcus acidilactici)、枯草芽孢桿菌(Bacillus subtilis)、納豆芽孢桿菌(Bacillus natto)、嗜酸乳桿菌(Lactobacillus acidophilus)、乳鏈球菌(Streptococcus lactis)、啤酒酵母(Saccharomyces cerevisia)、產(chǎn)朊假絲酵母(Candida utilis)和沼澤紅假單胞菌(Rhodopseudomonas palustris)等12種飼料級(jí)微生物菌種,其中乳酸桿菌、雙歧桿菌及酵母菌等在飼料中的應(yīng)用較為廣泛。

1 益生菌的定義及其在飼料應(yīng)用中的調(diào)制方式

自1899年法國(guó)科學(xué)家Henry Tissier首次從嬰兒的糞便中分離出第1株益生菌“雙歧桿菌”至今,人類對(duì)益生菌的研究已有100多年的歷史。隨著益生菌研究的發(fā)展,不僅活微生物對(duì)宿主健康有益,熱滅活的微生物如乳酸桿菌、雙歧桿菌等菌株也有利于宿主健康。因此,凡是對(duì)宿主健康有益的活的微生物及有活力的微生物細(xì)胞都稱為益生菌。

隨著動(dòng)物飼料中抗生素使用的限制,益生菌替代抗生素的應(yīng)用日益廣泛。迄今為止,已發(fā)現(xiàn)的益生菌種類繁多,根據(jù)益生菌的生物學(xué)特性,主要分為乳酸菌科如保加利亞乳桿菌(Lactobsccillus bulgaricus)、植物乳桿菌、羅伊氏乳酸桿菌(Lactobacillus reuterii)、發(fā)酵乳酸桿菌(Lactobacillus fermentum)等;芽孢桿菌科如地衣芽孢桿菌(Bacillus licheniformis)、短小芽孢桿菌(Bacillus pumilus)、枯草芽孢桿菌等;鏈球菌科如乳酸鏈球菌、嗜熱鏈球菌(Streptococcus theromophilus)等;放線菌科如動(dòng)物雙歧桿菌(Bifidobacterium animaiis)、嗜熱雙歧桿菌(Bifidobacterium thermophilum)、短雙歧桿菌(Bifidobacterium breve)、兩歧雙歧桿菌(Bifldobacterium bifldium)等;以及乳酸片球菌、腸膜明串珠菌(Leuconostoc mesenteroides)、糞腸球菌(Enterococcus faecium)等其他科細(xì)菌[1]。

隨著益生菌應(yīng)用的推廣,根據(jù)益生菌的生物學(xué)特性及飼料加工工藝,益生菌作為飼料添加劑的調(diào)制方式也出現(xiàn)多元化。目前主要采用活性及滅活益生菌干粉直接添加,益生菌發(fā)酵飼料(固體和液體發(fā)酵)、益生菌微膠囊化等作為飼料添加劑使用。

2 益生菌改善動(dòng)物健康

益生菌調(diào)節(jié)宿主腸道健康、營(yíng)養(yǎng)利用及抗應(yīng)激等生理機(jī)能的作用機(jī)制主要包括3個(gè)方面:一是通過調(diào)節(jié)先天免疫及獲得性免疫提高宿主免疫功能;二是直接作用于共生或病原微生物,防御及治療感染腸道疾病并恢復(fù)腸道微生物穩(wěn)態(tài);三是對(duì)微生物毒素脫毒以及宿主代謝產(chǎn)物、食物等成分的解毒作用。

2.1 益生菌調(diào)節(jié)腸道健康

益生菌主要通過抑制病原菌群的生長(zhǎng),促進(jìn)有益菌群生長(zhǎng)來調(diào)節(jié)腸道穩(wěn)態(tài)并促進(jìn)腸道健康[2],一方面通過清除腸道代謝產(chǎn)物、細(xì)菌素,促進(jìn)腸道抗菌肽及黏蛋白的生成等間接方式調(diào)節(jié)腸道的屏障功能、免疫功能、脫毒、解毒作用;另一方面通過與腸道病原菌群黏附位點(diǎn)的時(shí)空競(jìng)爭(zhēng)、營(yíng)養(yǎng)競(jìng)爭(zhēng)作用,限制腸道中病原菌的定植、生存及繁殖,并通過控制有益菌群與有害菌群的比例來調(diào)節(jié)腸道菌群穩(wěn)態(tài),從而調(diào)節(jié)宿主腸道健康(表 1)。

表 1 益生菌對(duì)豬腸道健康的影響Table 1 Effects of probiotics on intestinal health in pigs

2.1.1 益生菌改善腸道免疫功能

腸道是體內(nèi)與外界環(huán)境接觸的主要場(chǎng)所,也是病原體入侵和定植的主要場(chǎng)所。腸道黏液層是聯(lián)系腸道上皮細(xì)胞與腸道微生物的中間凝膠網(wǎng)狀結(jié)構(gòu),其隔離腸腔內(nèi)物質(zhì)包括營(yíng)養(yǎng)物質(zhì)、分泌物、代謝產(chǎn)物及腸道微生物等與腸上皮細(xì)胞的接觸。黏液層是腸道黏膜屏障抵御病原微生物侵?jǐn)_的第1道防線,通過降低抗原在免疫系統(tǒng)中的暴露以及保護(hù)機(jī)體免于自我消化行使其防御功能。腸道黏液層主要由杯狀細(xì)胞分泌的黏蛋白組成,益生菌可緩解大腸桿菌引起的杯狀細(xì)胞的減少以及黏液層厚度的降低來提高機(jī)體免疫功能;影響斷奶仔豬小腸黏蛋白中糖蛋白組分,黏蛋白的聚糖通過結(jié)合具有聚糖結(jié)構(gòu)特異性黏附素的細(xì)菌,影響對(duì)腸道細(xì)菌的黏附作用,調(diào)節(jié)有益菌群在腸道中的定植。有研究表明,益生菌通過增加腸道黏膜層的定植影響?zhàn)ひ簩拥暮穸萚16],其影響?zhàn)つ拥亩ㄖ?、膜層杯狀?xì)胞黏蛋白的分泌、黏液層的厚度,進(jìn)而影響?zhàn)ひ簩拥姆烙δ?。益生菌不僅通過調(diào)節(jié)黏液層中黏蛋白誘導(dǎo)腸上皮細(xì)胞表面蛋白的合成來影響腸上皮細(xì)胞的黏附作用,以及編碼微生物與宿主黏附作用的黏附素影響其與宿主腸道細(xì)胞的黏附與定植,還通過調(diào)節(jié)腸上皮細(xì)胞之間緊密連接蛋白(ZO-1)、閉合蛋白(occludin)、密封蛋白(claudin)等表達(dá),降低病原微生物的入侵,改善腸道健康[17-18]。

腸上皮細(xì)胞與病原微生物的互作常引起動(dòng)物腸道的免疫失調(diào),益生菌通過調(diào)節(jié)腸上皮細(xì)胞免疫功能,預(yù)防或治療腸道功能的紊亂。益生菌通過增加腸道中吞噬細(xì)胞數(shù)量清除腸道病原菌,調(diào)節(jié)腸道免疫;也可通過調(diào)節(jié)腸道免疫球蛋白、細(xì)胞因子及抗菌肽等表達(dá)提高機(jī)體免疫功能。Cazorla等[18]研究表明干酪乳桿菌及副乾酪乳桿菌(Lactobacillus paracasei)增加腸道潘氏細(xì)胞數(shù)量及腸道抗菌肽活性。研究發(fā)現(xiàn)益生菌有效改善大腸桿菌或沙門氏菌感染引起的仔豬腹瀉及腸道損傷,降低血清中白細(xì)胞介素-6(IL-6)含量,增加血清中免疫球蛋白M(IgM)及免疫球蛋白A(IgA)含量,增強(qiáng)仔豬免疫力,促進(jìn)仔豬生長(zhǎng)[19]。

益生菌通過介導(dǎo)腸上皮細(xì)胞的模式識(shí)別受體(PRR)直接應(yīng)答微生物、代謝產(chǎn)物,或介導(dǎo)PRR與微生物相關(guān)分子模式(MAMP)結(jié)合,通過調(diào)節(jié)多個(gè)信號(hào)通路來調(diào)控受體的表達(dá),并激發(fā)機(jī)體自身非特異性免疫應(yīng)答,維持腸道內(nèi)環(huán)境穩(wěn)定及炎癥抑制等一系列免疫保護(hù)反應(yīng)。研究發(fā)現(xiàn)益生菌通過絲裂原活化蛋白激酶(MAPK)信號(hào)通路及信號(hào)轉(zhuǎn)導(dǎo)與轉(zhuǎn)錄激活因子(STAT3)信號(hào)通路,調(diào)節(jié)細(xì)胞因子信號(hào)傳導(dǎo)的抑制因子(SOC3)的表達(dá),抑制核因子-κB(NF-κB)的活性及IL-6的分泌,緩解炎癥的發(fā)生[20]。酵母菌通過激活過氧化物酶體增殖物激活受體-γ(PPAR-γ)和抑制細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2(ERK1/2)和p38絲裂原活化蛋白激酶(p38 MAPK)的磷酸化來抑制促炎因子IL-6、白細(xì)胞介素-8(IL-8)、趨化因子配體20(CCL20)、趨化因子配體2(CXCL2)及趨化因子配體10(CXCL10)的轉(zhuǎn)錄表達(dá),進(jìn)而調(diào)節(jié)腸道免疫[21]。

2.1.2 益生菌影響腸道微生物菌群結(jié)構(gòu)

益生菌通過爭(zhēng)奪營(yíng)養(yǎng)、代謝產(chǎn)物以及時(shí)空的占位效應(yīng)等產(chǎn)生生物拮抗功能,調(diào)節(jié)腸道菌群結(jié)構(gòu)及穩(wěn)態(tài),調(diào)控腸道微生物的毒素的產(chǎn)生量及活力,控制腸道潛在病原菌的毒力及活性。

研究表明枯草芽孢桿菌通過調(diào)節(jié)盲腸內(nèi)容物中擬桿菌門(Bacteroidetes)及增加厚壁菌門(Firmicutes)比例改善腸道菌群結(jié)構(gòu)及穩(wěn)態(tài),促進(jìn)動(dòng)物生長(zhǎng)[22]。雙歧桿菌及乳酸桿菌的復(fù)合益生菌可降低腸道內(nèi)潛在致病菌產(chǎn)氣莢膜梭狀芽胞桿菌(Clostridium perfringens)的定植密度。出生后立即使用該復(fù)合益生菌可提高乳酸菌等有益菌群的定植,同時(shí)降低致病菌群的定植,緩解早產(chǎn)仔豬腹瀉、功能障礙,降低病原菌入侵及早產(chǎn)新生仔豬的壞死性小腸結(jié)腸炎的發(fā)生率及程度[3]。鼠李糖乳酸桿菌有效改善大腸桿菌感染后仔豬腸道微生物菌群結(jié)構(gòu),降低糞便中大腸桿菌數(shù)量,增加雙歧桿菌等有益菌群數(shù)量[23]。

腸腔內(nèi)細(xì)菌毒素通過分解細(xì)胞間緊密連接蛋白并破壞腸道屏障后,經(jīng)細(xì)胞旁運(yùn)輸進(jìn)入循環(huán),誘發(fā)腸道炎癥及腹瀉。植物乳桿菌有效降低腸道中半乳糖與甘露醇比例及腸道通透性,減少細(xì)菌內(nèi)毒素(LPS)進(jìn)入腸道黏膜層及基底層的數(shù)量,進(jìn)而起到脫毒的效果。添加植物乳桿菌(22F、25F和31F)、乳酸片球菌(72N)及戊糖片球菌(Pediococcus pentosaceus 77F)等復(fù)合益生菌,顯著抑制大腸桿菌(Escherichia coli)、豬霍亂沙門氏菌(Salmonella choleraesuis)及豬鏈球菌(Streptococcus suis)等豬腸道病原菌的生長(zhǎng)及活性,調(diào)節(jié)腸道菌群穩(wěn)態(tài),促進(jìn)動(dòng)物生長(zhǎng)[24]。研究發(fā)現(xiàn)飼糧中添加芽孢桿菌可顯著提高斷奶仔豬糞便中乳酸桿菌數(shù)量,降低大腸桿菌數(shù)量,調(diào)節(jié)腸道微生物菌群[25]。而屎腸球菌不僅提高沙門氏菌感染后仔豬糞便以及腸道中沙門氏菌數(shù)量,同時(shí)提高腸道免疫力,抵御腸道病原菌及毒素的入侵[19],但也有研究指出屎腸球菌對(duì)沙門氏菌感染后仔豬的糞便中沙門氏菌的數(shù)量無影響,對(duì)感染沙門氏菌的仔豬生長(zhǎng)、免疫等也無改善效果[26],對(duì)母豬腸道微生物菌群也無顯著改善效果,不影響母豬腸道乳酸桿菌、革蘭氏陽性及陰性厭氧菌、大腸桿菌及腸球菌等增殖[10]。因此,益生菌的菌株菌種、質(zhì)量差異以及受試動(dòng)物差異等直接影響其有效性評(píng)價(jià)。

2.2 益生菌調(diào)節(jié)營(yíng)養(yǎng)物質(zhì)利用

益生菌通過調(diào)控腸道營(yíng)養(yǎng)物質(zhì)利用,促進(jìn)動(dòng)物生長(zhǎng)。益生菌調(diào)控腸道蔗糖酶、乳糖酶、三肽酶、淀粉酶、脂肪酶、植酸酶、蛋白酶等消化酶活性,改善豬腸道對(duì)飼糧中營(yíng)養(yǎng)成分的消化吸收,進(jìn)而影響斷奶仔豬的生長(zhǎng)[27]。飼糧中添加枯草芽孢桿菌增加豬腸道內(nèi)容物中厚壁菌群數(shù)量,降低擬桿菌群數(shù)量,改善腸道消化吸收功能;枯草芽孢桿菌通過降低血清中甘油三酯、葡萄糖含量,以及肝臟中脂肪酸合酶(FAS)和乙酰輔酶A羧化酶α(ACCα)表達(dá),調(diào)節(jié)機(jī)體脂肪等營(yíng)養(yǎng)物質(zhì)的代謝[22]。此外,益生菌也可能通過改善腸道絨毛高度,增加腸道營(yíng)養(yǎng)物質(zhì)的吸收面積,進(jìn)而提高營(yíng)養(yǎng)物質(zhì)吸收效率。

益生菌影響動(dòng)物對(duì)飼料轉(zhuǎn)化率及飼料中營(yíng)養(yǎng)成分的利用率,調(diào)控動(dòng)物的生長(zhǎng)。飼糧中添加復(fù)合芽孢桿菌不僅顯著提高斷奶仔豬干物質(zhì)、氮及總能的全消化道表觀消化率及蛋白質(zhì)利用率進(jìn)而提高營(yíng)養(yǎng)利用率[25]。而芽孢桿菌與釀酒酵母復(fù)合使用顯著提高生長(zhǎng)豬干物質(zhì)、氮及總能的全消化道表觀消化率,同時(shí)提高回腸中氮及部分氨基酸(異亮氨酸、色氨酸、纈氨酸、絲氨酸及酪氨酸)消化率[28]。屎腸球菌與釀酒酵母混合菌提高肥育豬粗脂肪、粗蛋白質(zhì)、干物質(zhì)、鈣、磷等消化率[29]。研究表明加氏乳桿菌(Lactobacillus gasseri)、羅伊氏乳桿菌(Lactobacillus reuteri)、嗜酸性乳桿菌(Lactobacillus acidophilus)及發(fā)酵乳酸桿菌等復(fù)合型乳酸菌提高斷奶仔豬腸道有機(jī)物、粗蛋白質(zhì)、粗纖維全消化道表觀消化率[30]??莶菅挎邨U菌、釀酒酵母菌及植物乳桿菌復(fù)合使用,可有效提高氮、磷表觀消化率,提高飼料利用率[31]。因此,益生菌可有效改善飼料轉(zhuǎn)化率及利用率,促進(jìn)動(dòng)物生長(zhǎng),其在生豬產(chǎn)業(yè)中推廣使用具有良好的發(fā)展前景。

2.3 益生菌促進(jìn)生豬養(yǎng)殖的節(jié)能減排

益生菌可通過提高營(yíng)養(yǎng)物質(zhì)消化吸收功能來提高飼料轉(zhuǎn)化率,還可通過調(diào)節(jié)腸道微生物菌群結(jié)構(gòu)影響微生物代謝產(chǎn)物,進(jìn)而減少?gòu)U棄物的排放。益生菌發(fā)酵飼料改善仔豬腸道黏膜形態(tài)、腸道內(nèi)發(fā)酵及營(yíng)養(yǎng)物質(zhì)消化[6],促進(jìn)生豬養(yǎng)殖業(yè)的節(jié)能減排、綠色生態(tài)的健康發(fā)展。研究表明飼糧中添加復(fù)合芽孢桿菌可還降低血液尿素氮含量,減少生豬糞污中氨氣及硫化氫的排放[25],而釀酒酵與母芽孢桿菌或與屎腸球菌復(fù)合使用減少生長(zhǎng)肥育豬氨氣、硫化氫及硫醇類等臭味物質(zhì)排放[28-29]。短乳酸菌或與酵母菌復(fù)合使用可降低鈣、磷的排放,而復(fù)合型乳酸菌降低豬糞污中氮、磷排放[30]。枯草芽孢桿菌、釀酒酵母菌及植物乳桿菌復(fù)合菌可減少糞便中氮和磷排放,降低畜禽糞便對(duì)環(huán)境的污染[31]。因此,益生菌通過調(diào)控豬生理功能,對(duì)減少糞污氮磷及臭氣等排放具有顯著的效果,其作為綠色、環(huán)保、生態(tài)的飼料添加劑在生豬產(chǎn)業(yè)中推廣使用具有良好的發(fā)展前景。

2.4 益生菌影響豬生長(zhǎng)及應(yīng)激狀況

隨著益生菌的應(yīng)用開發(fā),益生菌作為替代抗生素的促生長(zhǎng)劑,被廣泛應(yīng)用于動(dòng)物飼料中。益生菌除了改善動(dòng)物腸道菌群、免疫力,調(diào)節(jié)動(dòng)物營(yíng)養(yǎng)消化率及飼料轉(zhuǎn)化效率,對(duì)養(yǎng)殖中動(dòng)物應(yīng)激也有一定的緩解效果。雙歧桿菌、嗜酸性乳酸桿菌、干酪乳桿菌、戊糖乳桿菌及植物乳桿菌的復(fù)合益生菌有利于緩解早產(chǎn)應(yīng)激,提高早產(chǎn)仔豬生長(zhǎng)性能[3]。乳酸片球菌、腸球菌、酵母菌(釀酒酵母及布拉迪酵母)、嗜酸性乳桿菌等益生菌也可改善仔豬腸道健康,減少仔豬斷奶后腹瀉的發(fā)生率、嚴(yán)重程度及仔豬死亡率,緩解仔豬斷奶應(yīng)激綜合征[11, 13, 15-16, 32]。嗜酸性乳酸桿菌及釀酒酵母通過下調(diào)組織中熱休克蛋白70(Hsp70)和熱休克蛋白27(Hsp27)的表達(dá),提高組織中谷胱甘肽過氧化物酶(GPx1)的表達(dá),緩解高溫引起的仔豬熱應(yīng)激及氧化應(yīng)激[33-34]。研究發(fā)現(xiàn)地衣芽孢桿菌及枯草芽孢桿菌可有效緩解母豬產(chǎn)仔后乳房炎、子宮炎引起的無乳綜合征,提高母豬生育力及后代仔豬存活率[35]。應(yīng)激是生豬養(yǎng)殖業(yè)中常見的問題之一,目前,益生菌在動(dòng)物應(yīng)激方面的相關(guān)研究較少,因此,益生菌對(duì)緩解動(dòng)物應(yīng)激的研發(fā)具有良好的發(fā)展前景及推廣價(jià)值,對(duì)提高生豬生產(chǎn)力及生豬養(yǎng)殖業(yè)中經(jīng)濟(jì)效益具有重要意義(表 2)。

表 2 益生菌對(duì)豬營(yíng)養(yǎng)利用及應(yīng)激的影響Table 2 Effects of probiotics on nutrient utilization and stress in pigs

2.5 益生菌改善豬肉品質(zhì)

益生菌不但提高豬生長(zhǎng)速度,還可提高豬肉營(yíng)養(yǎng)價(jià)值,改善豬肉品質(zhì)。飼糧中添加益生菌通過提高豬肉中超氧化物歧化酶及谷胱甘肽過氧化物酶等酶類活性,提高豬肉抗氧化能力及肉品質(zhì)[39]。研究表明飼喂復(fù)合益生菌(枯草芽孢桿菌與丁酸梭菌)可顯著改善肥育豬背最長(zhǎng)肌肉色、大理石紋評(píng)分、系水力、pH,提高眼肌面積及瘦肉率等胴體品質(zhì)[37]。飼糧中添加乳酸菌片球菌可改善豬肉pH、嫩度、系水力、多汁性、風(fēng)味、顏色與外形等品質(zhì)[40],植物乳酸桿菌可有效改善豬肉pH、剪切力、咀嚼嫩度、油膩性、系水力、黏性等肉品質(zhì)[41],因此,益生菌作為飼料添加劑可提高豬肉營(yíng)養(yǎng)價(jià)值及品質(zhì),具有良好的市場(chǎng)應(yīng)用前景。

3 益生菌在生豬養(yǎng)殖業(yè)中的推廣應(yīng)用3.1 益生菌在仔豬生產(chǎn)中的應(yīng)用

益生菌具有改善腸道菌群結(jié)構(gòu)、腸道免疫及消化等功能,其常用于仔豬生產(chǎn),尤其是斷奶仔豬。研究表明從出生到斷奶期口服屎腸球菌顯著降低仔豬腹瀉率及腹瀉程度,同時(shí)提高仔豬平均日增重[42]。Lv等[33]利用富硒益生菌顯著提高仔豬糞便中乳酸桿菌與大腸桿菌比例,改善腸道菌群結(jié)構(gòu);提高仔豬血清中硒含量及谷胱甘肽過氧化物酶活性,緩解斷奶應(yīng)激及高溫應(yīng)激;提高斷奶仔豬體重、平均日增重,降低料重比,促進(jìn)仔豬生長(zhǎng)。何佳等[43]通過在玉米-豆粕型基礎(chǔ)飼糧中添加復(fù)合益生菌調(diào)節(jié)仔豬腸道微生物菌群,提高糞便中乳酸桿菌和雙歧桿菌等有益菌群數(shù)量,降低大腸桿菌數(shù)量,降低仔豬腹瀉率并提高仔豬生長(zhǎng)性能。吳寧等[44]利用益生菌與中草藥及酸化劑進(jìn)行復(fù)合使用,降低仔豬腹瀉率,提高仔豬生長(zhǎng)性能,且達(dá)到替代抗生素的效果,即提高仔豬免疫力及促生長(zhǎng)功能。目前出現(xiàn)大量的益生菌與其他物質(zhì)復(fù)合使用(如纖維寡糖、非淀粉多糖復(fù)合酶類、木瓜蛋白酶等),改善腸道菌群結(jié)構(gòu)及干物質(zhì)、粗蛋白質(zhì)、粗纖維等腸道消化率,促進(jìn)仔豬生長(zhǎng),進(jìn)而達(dá)到替代抗生素的目的。益生菌發(fā)酵料在仔豬生產(chǎn)中用于改善仔豬腸道健康及免疫功能,促進(jìn)仔豬生長(zhǎng)[45]。

3.2 益生菌在生長(zhǎng)肥育豬生產(chǎn)中的應(yīng)用

益生菌不僅用于仔豬生產(chǎn),也應(yīng)用于生長(zhǎng)肥育豬生產(chǎn)。添加益生菌提高生長(zhǎng)豬平均日增重、眼肌面積、瘦肉率、肌肉系水力,降低背膘厚;同時(shí)通過增加血清和肌肉中超氧化物歧化酶及谷胱甘肽過氧化物酶活性及降低丙二醛含量,提高機(jī)體抗氧化能力;同時(shí)降低成本,提高生豬養(yǎng)殖利潤(rùn)[39]。飼糧中添加乳酸菌可改善豬肉pH、嫩度、系水力、多汁性、風(fēng)味、顏色與外形等品質(zhì)[40],而添加枯草芽孢桿菌與丁酸梭菌可改善豬肉肉色、大理石紋評(píng)分、系水力、pH及眼肌面積等品質(zhì)[37]。研究表明益生菌與中草藥復(fù)合使用顯著提高血清免疫球蛋白IgM含量,白細(xì)胞介素-4(IL-4)、IL-6及干擾素-β(IFN-β)等免疫因子的表達(dá),并調(diào)高葡萄糖等營(yíng)養(yǎng)物質(zhì)的轉(zhuǎn)化,促進(jìn)生長(zhǎng)豬的生長(zhǎng)[46]。Jeong等[47]在飼糧中添加益生菌發(fā)酵的中草藥,提高生長(zhǎng)豬干物質(zhì)、總能的消化率,降低有毒氣體如氨氣、硫化氫的排放,增加飼料轉(zhuǎn)化率,促進(jìn)動(dòng)物生長(zhǎng)。研究表明該益生菌復(fù)合配方可作為抗生素替代物的生長(zhǎng)促進(jìn)劑應(yīng)用于生長(zhǎng)豬生產(chǎn)。益生菌可改善氮、氨基酸的回腸消化率及營(yíng)養(yǎng)物質(zhì)的全消化道表觀消化率、腸道菌群及穩(wěn)態(tài),提高生長(zhǎng)豬平均日增重,降低養(yǎng)豬成本。飼糧中添加芽孢桿菌可提高生長(zhǎng)肥育豬平均日增重,降低料重比及死亡率,增加養(yǎng)殖效益[38]。益生菌不僅可改善生長(zhǎng)肥育豬毛色,提高平均日增重及有機(jī)磷消化率,降低料重比,還可通過調(diào)節(jié)腸道pH及腸道微生物菌群改善肥育豬的健康狀況,調(diào)節(jié)飼料轉(zhuǎn)化率及新陳代謝促進(jìn)肥育豬生長(zhǎng)。

3.3 益生菌在母豬生產(chǎn)中的應(yīng)用

在母豬生產(chǎn)養(yǎng)殖中,益生菌常用來改善母豬健康狀況,緩解應(yīng)激,提高其生長(zhǎng)性能。Inatomi等[48]研究發(fā)現(xiàn)飼糧中添加腸系膜芽孢桿菌(Bacillus mesentericus)、丁酸梭菌和糞球菌復(fù)合菌不僅提高妊娠期母豬體重,還顯著提高產(chǎn)后母豬的體重及其乳汁產(chǎn)量,并提高初乳中IgA和IgG含量及抗體滴度,縮短斷奶到發(fā)情的時(shí)間間隔;同時(shí)也發(fā)現(xiàn)該復(fù)合菌顯著提高后代哺乳期仔豬體重并降低哺乳期仔豬死亡率。屎腸球菌可提高初產(chǎn)母豬妊娠期及泌乳期采食量及體重,但不影響初產(chǎn)母豬及后代仔豬糞便微生物乳酸桿菌、革蘭氏厭氧菌、大腸桿菌及腸球菌的菌群數(shù)量[10],而Taras等[11]指出屎腸球菌不影響母豬哺乳期及后代體重、采食量及飼料轉(zhuǎn)化率,但降低后代仔豬斷奶后腹瀉率。母豬飼糧中長(zhǎng)期添加蠟狀芽孢桿菌顯著提高母豬護(hù)理仔豬的數(shù)量及天數(shù),并提高后代仔豬平均日增重及飼料轉(zhuǎn)化率,緩解仔豬斷奶后腹瀉,促進(jìn)后代仔豬生長(zhǎng)[12]。而飼糧中添加地衣芽孢桿菌及枯草芽孢桿菌增加母豬產(chǎn)后采食量,減少哺乳期母豬體重?fù)p失;提高其血清膽固醇及總脂肪含量及乳汁中總脂肪和總蛋白含量;緩解乳房炎-子宮炎-無乳綜合征,縮短發(fā)情間隔,提高生育力;同時(shí)還降低后代仔豬腹瀉率、死亡率,增加后代仔豬體重[35]。

4 結(jié)論

益生菌作為替代抗生素的微生物制劑,不僅促進(jìn)動(dòng)物生長(zhǎng),還利于改善豬腸道健康,提高營(yíng)養(yǎng)利用,緩解動(dòng)物應(yīng)激,其作為新型微生物促生長(zhǎng)劑及保健劑的研發(fā)具有廣闊的發(fā)展前景。然而益生菌的調(diào)控機(jī)理尚未完善、優(yōu)良菌種缺乏且質(zhì)量參差不齊、安全性尚無明確定論、微生物添加劑相關(guān)標(biāo)準(zhǔn)尚未完善等問題至今未能解決,限制了微生物飼料添加劑的推廣與發(fā)展。因此,需要進(jìn)一步深入探索益生菌調(diào)控機(jī)理、篩選良種、評(píng)價(jià)其有效性和安全性、配套相應(yīng)標(biāo)準(zhǔn)及技術(shù),不僅對(duì)畜禽養(yǎng)殖生產(chǎn)應(yīng)用具有指導(dǎo)意義,而且對(duì)畜牧業(yè)的健康養(yǎng)殖及生態(tài)農(nóng)業(yè)的發(fā)展也具有重大的推動(dòng)作用。

參考文獻(xiàn)

[1]

KONSTANTINOV S R, SMIDT H, AKKERMANS A D, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets[J]. FEMS Microbiology Ecology, 2008, 66(3): 599-607. DOI:10.1111/fem.2008.66.issue-3

[2]

HU S L, WANG L, JIANG Z Y. Dietary additive probiotics modulation of the intestinal microbiota[J]. Protein & Peptide Letters, 2017, 24(5): 382-387.

[3]

SIGGERS R H, SIGGERS J, BOYE M, et al. Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs[J]. The Journal of Nutrition, 2008, 138(8): 1437-1444. DOI:10.1093/jn/138.8.1437

[4]

LIU H, ZHANG J, ZHANG S H, et al. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets[J]. Journal of Agricultural and Food Chemistry, 2014, 62(4): 860-866. DOI:10.1021/jf403288r

[5]

DEMECKOVá V, KELLY D, COUTTS A G P, et al. The effect of fermented liquid feeding on the faecal microbiology and colostrum quality of farrowing sows[J]. International Journal of Food Microbiology, 2002, 79(1/2): 85-97.

[6]

MORAN C A, SCHOLTEN R H, TRICARICO J M, et al. Fermentation of wheat:effects of backslopping different proportions of pre-fermented wheat on the microbial and chemical composition[J]. Archives of Animal Nutrition, 2006, 60(2): 158-169. DOI:10.1080/17450390600562700

[7]

CASEY P G, GARDINER G E, CASEY G, et al. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with salmonella enterica serovar Typhimurium[J]. Applied and Environmental Microbiology, 2007, 73(6): 1858-1863. DOI:10.1128/AEM.01840-06

[8]

QIAO J Y, LI H H, WANG Z X, et al. Effects of Lactobacillus acidophilus dietary supplementation on the performance, intestinal barrier function, rectal microflora and serum immune function in weaned piglets challenged with Escherichia coli lipopolysaccharide[J]. Antonie Van Leeuwenhoek, 2015, 107(4): 883-891. DOI:10.1007/s10482-015-0380-z

[9]

PAJARILLO E A B, CHAE J P, BALOLONG M P, et al. Characterization of the fecal microbial communities of duroc pigs using 16S rRNA gene pyrosequencing[J]. Asian-Australasian Journal of Animal Sciences, 2015, 28(4): 584-591. DOI:10.5713/ajas.14.0651

[10]

B?HMER B M, KRAMER W, ROTH-MAIER D A. Dietary probiotic supplementation and resulting effects on performance, health status, and microbial characteristics of primiparous sows[J]. Journal of Animal Physiology and Animal Nutrition, 2006, 90(7/8): 309-315.

[11]

TARAS D, VAHJEN W, MACHA M, et al. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets[J]. Journal of Animal Science, 2006, 84(3): 608-617. DOI:10.2527/2006.843608x

[12]

TARAS D, VAHJEN W, MACHA M, et al. Response of performance characteristics and fecal consistency to long-lasting dietary supplementation with the probiotic strain Bacillus cereus var. toyoi to sows and piglets[J]. Archives of Animal Nutrition, 2005, 59(6): 405-417. DOI:10.1080/17450390500353168

[13]

CHE L Q, XU Q, WU C, et al. Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88[J]. British Journal of Nutrition, 2017, 118(11): 949-958. DOI:10.1017/S0007114517003051

[14]

張麗.新型酵母培養(yǎng)物的制備及其對(duì)斷奶仔豬生長(zhǎng)性能、表觀消化率和糞便微生物的影響[D].碩士學(xué)位論文.北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2016. http://cdmd.cnki.com.cn/Article/CDMD-82101-1016171399.htm

[15]

DI GIANCAMILLO A, VITARI F, SAVOINI G, et al. Effects of orally administered probiotic Pediococcus acidilactici on the small and large intestine of weaning piglets.A qualitative and quantitative micro-anatomical study[J]. Histology and Histopathology, 2008, 23(6): 651-664.

[16]

REUNANEN J, KAINULAINEN V, HUUSKONEN L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology, 2015, 81(11): 3655-3662. DOI:10.1128/AEM.04050-14

[17]

CHAFFANEL F, CHARRON-BOURGOIN F, SOLIGOT C, et al. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells[J]. Applied Microbiology and Biotechnology, 2018, 102(6): 2851-2865. DOI:10.1007/s00253-018-8794-y

[18]

CAZORLA S I, MALDONADO-GALDEANO C, WEILL R, et al. Oral administration of probiotics increases Paneth cells and intestinal antimicrobial activity[J]. Frontiers in Microbiology, 2018, 9: 736. DOI:10.3389/fmicb.2018.00736

[19]

SZABí I, WIELER L H, TEDIN K, et al. Influence of a probiotic strain of Enterococcus faecium on Salmonella enterica serovar typhimurium DT104 infection in a porcine animal infection model[J]. Applied and Environmental Microbiology, 2009, 75(9): 2621-2628. DOI:10.1128/AEM.01515-08

[20]

RUIZ P A, HOFFMANN M, SZCESNY S, et al. Innate mechanisms for Bifidobacterium lactis to activate transient pro-inflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats[J]. Immunology, 2005, 115(4): 441-450. DOI:10.1111/imm.2005.115.issue-4

[21]

ZANELLO G, BERRI M, DUPONT J, et al. Saccharomyces cerevisiae modulates immune gene expressions and inhibits ETEC-mediated ERK1/2 and p38 signaling pathways in intestinal epithelial cells[J]. PLoS One, 2011, 6(4): e18573. DOI:10.1371/journal.pone.0018573

[22]

LEVINE B, KLIONSKY D J. Development by self-digestion:molecular mechanisms and biological functions of autophagy[J]. Developmental Cell, 2004, 6(4): 463-477. DOI:10.1016/S1534-5807(04)00099-1

[23]

ZHANG L, XU Y Q, LIU H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea:effects on diarrhoea incidence, faecal microflora and immune responses[J]. Veterinary Microbiology, 2010, 141(1/2): 142-148.

[24]

SIRICHOKCHATCHAWAN W, PUPA P, PRAECHANSRI P, et al. Autochthonous lactic acid bacteria isolated from pig faeces in Thailand show probiotic properties and antibacterial activity against enteric pathogenic bacteria[J]. Microbial Pathogenesis, 2018, 119: 208-215. DOI:10.1016/j.micpath.2018.04.031

[25]

LAN R X, LEE S I, KIM I H. Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs[J]. Journal of Animal Physiology and Animal Nutrition, 2016, 100(6): 1130-1138. DOI:10.1111/jpn.2016.100.issue-6

[26]

KREUZER S, JANCZYK P, ABMUS J, et al. No beneficial effects evident for Enterococcus faecium NCIMB 10415 in weaned pigs infected with Salmonella enterica serovar Typhimurium DT104[J]. Applied and Environmental Microbiology, 2012, 78(14): 4816-4825. DOI:10.1128/AEM.00395-12

[27]

KIM E Y, KIM Y H, RHEE M H, et al. Selection of Lactobacillus sp. PSC101 that produces active dietary enzymes such as amylase, lipase, phytase and protease in pigs[J]. The Journal of General and Applied Microbiology, 2007, 53(2): 111-117. DOI:10.2323/jgam.53.111

[28]

LIU W C, DEVI S, PARK J, et al. Effects of complex probiotic supplementation in growing pig diets with and without palm kernel expellers on growth performance, nutrient digestibility, blood parameters, fecal microbial shedding and noxious gas emission[J]. Animal Science Journal, 2018, 89(3): 552-560. DOI:10.1111/asj.2018.89.issue-3

[29]

李方方, 張慧, 朱宇旌, 等. 微膠囊益生菌對(duì)肥育豬生長(zhǎng)性能、血清生化指標(biāo)及營(yíng)養(yǎng)物質(zhì)表觀消化率的影響[J]. 養(yǎng)豬, 2016(5): 9-12. DOI:10.3969/j.issn.1002-1957.2016.05.004

[30]

HUANG C H, QIAO S Y, LI D F, et al. Effects of Lactobacilli on the performance, diarrhea incidence, VFA concentration and gastrointestinal microbial flora of weaning pigs[J]. Asian-Australasian Journal of Animal Sciences, 2004, 17(3): 401-409. DOI:10.5713/ajas.2004.401

[31]

史慧玲, 楊福, 郝曉鳴, 等. 不同的益生菌組合對(duì)保育豬糞污氮磷減排的影響[J]. 飼料研究, 2015(10): 24-27.

[32]

LE BON M, DAVIES H E, GLYNN C, et al. Influence of probiotics on gut health in the weaned pig[J]. Livestock Science, 2010, 133(1/2/3): 179-181.

[33]

LV C H, WANG T, REGMI N, et al. Effects of dietary supplementation of selenium-enriched probiotics on production performance and intestinal microbiota of weanling piglets raised under high ambient temperature[J]. Journal of Animal Physiology and Animal Nutrition, 2015, 99(6): 1161-1171. DOI:10.1111/jpn.2015.99.issue-6

[34]

GAN F, REN F, CHEN X X, et al. Effects of selenium-enriched probiotics on heat shock protein mRNA levels in piglet under heat stress conditions[J]. Journal of Agricultural and Food Chemistry, 2013, 61(10): 2385-2391. DOI:10.1021/jf300249j

[35]

ALEXOPOULOS C, GEORGOULAKIS I E, TZIVARA A, et al. Field evaluation of the efficacy of a probiotic containing Bacillus licheniformis and Bacillus subtilis spores, on the health status and performance of sows and their litters[J]. Journal of Animal Physiology and Animal Nutrition, 2004, 88(11/12): 381-392.

[36]

KHAFIPOUR E, MUNYAKA P M, NYACHOTI C M, et al. Effect of crowding stress and Escherichia coli K88+ challenge in nursery pigs supplemented with anti-Escherichia coli K88+ probiotics[J]. Journal of Animal Science, 2014, 92(5): 2017-2029. DOI:10.2527/jas.2013-7043

[37]

MENG Q W, YAN L, AO X, et al. Influence of probiotics in different energy and nutrient density diets on growth performance, nutrient digestibility, meat quality, and blood characteristics in growing-finishing pigs[J]. Journal of Animal Science, 2010, 88(10): 3320-3326. DOI:10.2527/jas.2009-2308

[38]

DAVIS M E, PARROTT T, BROWN D C, et al. Effect of a Bacillus-based direct-fed microbial feed supplement on growth performance and pen cleaning characteristics of growing-finishing pigs[J]. Journal of Animal Science, 2008, 86(6): 1459-1467. DOI:10.2527/jas.2007-0603

[39]

呼紅梅, 林松, 武英, 等. 飼糧添加益生菌對(duì)豬生長(zhǎng)性能和肉品質(zhì)的影響[J]. 養(yǎng)豬, 2017(2): 50-53. DOI:10.3969/j.issn.1002-1957.2017.02.021

[40]

DOWARAH R, VERMA A K, AGARWAL N, et al. Efficacy of species-specific probiotic Pediococcus acidilactici FT28 on blood biochemical profile, carcass traits and physicochemical properties of meat in fattening pigs[J]. Research in Veterinary Science, 2018, 117: 60-64. DOI:10.1016/j.rvsc.2017.11.011

[41]

SUO C, YIN Y S, WANG X N, et al. Effects of Lactobacillus plantarum ZJ316 on pig growth and pork quality[J]. BMC Veterinary Research, 2012, 8: 89. DOI:10.1186/1746-6148-8-89

[42]

ZEYNER A, BOLDT E. Effects of a probiotic Enterococcus faecium strain supplemented from birth to weaning on diarrhoea patterns and performance of piglets[J]. Journal of Animal Physiology and Animal Nutrition, 2006, 90(1/2): 25-31.

[43]

何佳, 李慧, 曾新福, 等. 復(fù)合益生菌對(duì)斷奶仔豬生長(zhǎng)性能、糞便微生物菌群和免疫功能的影響[J]. 飼料研究, 2017(18): 21-24.

[44]

吳寧, 楊加梅, 張旭, 等. 中草藥、益生菌、酸化劑聯(lián)合添加替代抗生素在保育豬階段的研究[J]. 飼料工業(yè), 2013(16): 13-15.

[45]

王艷, 皮斌, 張三軍. 益生菌發(fā)酵飼料對(duì)仔豬生長(zhǎng)和免疫功能的影響[J]. 獸醫(yī)導(dǎo)刊, 2018(3): 18-19.

[46]

段明房, 胡紅偉, 閆凌鵬, 等. 中草藥益生菌復(fù)合制劑對(duì)生長(zhǎng)豬血液常規(guī)、血清生化和血清免疫指標(biāo)的影響[J]. 中國(guó)飼料, 2018(3): 54-59.

[47]

JEONG J S, KIM I H. Effect of probiotic bacteria-fermented medicinal plants (Gynura procumbens, Rehmannia glutinosa, Scutellaria baicalensis) as performance enhancers in growing pigs[J]. Animal Science Journal, 2015, 86(6): 603-609. DOI:10.1111/asj.2015.86.issue-6

[48]

INATOMI T, AMATATSU M, ROMERO-PéREZ G A, et al. Dietary probiotic compound improves reproductive performance of porcine epidemic diarrhea virus-infected sows reared in a Japanese commercial swine farm under vaccine control condition[J]. Front Immunol, 2017, 8: 1877. DOI:10.3389/fimmu.2017.01877

相關(guān)知識(shí)

The mechanism and application of probiotics in promoting gastrointestinal health
Application and effects of health education and management in chronic disease prevention and treatment of elderly in community
Skeletal Muscle Structure and Function in Health and Disease
Research progress and potential mechanism of postbiotics in alleviating gastrointestinal diseases
[The application of the National Standards for Students' Physical Health (2014 revision) in SPSS]
Changes in Physical and Oral Function after a Long
The Development of a Chinese Healthy Eating Index and Its Application in the General Population
Bibliometric Analysis of Advances in mHealth Technology Application in Chronic Disease Management
Master of Health Sciences in Nutrition and Dietetics
Health consciousness and health behavior: the application of a new health consciousness scale

網(wǎng)址: Function and Application of Probiotics in Pig Breeding http://m.gysdgmq.cn/newsview1644062.html

推薦資訊