首頁 資訊 Advances of development and application amino acid biosensors

Advances of development and application amino acid biosensors

來源:泰然健康網(wǎng) 時間:2026年01月17日 12:04

摘要:氨基酸是蛋白質(zhì)的基本組成單元,對人和動物的營養(yǎng)健康十分重要,廣泛應(yīng)用于飼料、食品、醫(yī)藥和日化等領(lǐng)域。目前,氨基酸主要通過微生物發(fā)酵可再生原料生產(chǎn),氨基酸產(chǎn)業(yè)是我國生物制造的重要支柱產(chǎn)業(yè)之一。氨基酸菌株主要通過隨機(jī)誘變和代謝工程改造結(jié)合篩選獲得。菌株生產(chǎn)水平進(jìn)一步提高的核心限制之一是缺乏高效、快速和準(zhǔn)確的篩選方法,因此,發(fā)展氨基酸菌株的高通量篩選方法對關(guān)鍵功能元件挖掘及高產(chǎn)菌株的創(chuàng)制篩選至關(guān)重要。本文綜述了氨基酸生物傳感器的設(shè)計,及其在功能元件、高產(chǎn)菌株的高通量進(jìn)化篩選和代謝途徑動態(tài)調(diào)控中的應(yīng)用研究進(jìn)展,討論了現(xiàn)有氨基酸生物傳感器存在的問題和性能提升改造策略,并展望了開發(fā)氨基酸衍生物生物傳感器的重要性。

Abstract: Amino acids are the basic building blocks of protein that are very important to the nutrition and health of humans and animals, and widely used in feed, food, medicine and daily chemicals. At present, amino acids are mainly produced from renewable raw materials by microbial fermentation, forming one of the important pillar industries of biomanufacturing in China. Amino acid-producing strains are mostly developed through random mutagenesis- and metabolic engineering-enabled strain breeding combined with strain screening. One of the key limitations to further improvement of production level is the lack of efficient, rapid, and accurate strain screening methods. Therefore, the development of high-throughput screening methods for amino acid strains is very important for the mining of key functional elements and the creation and screening of hyper-producing strains. This paper reviews the design of amino acid biosensors and their applications in the high-throughput evolution and screening of functional elements and hyper-producing strains, and the dynamic regulation of metabolic pathways. The challenges of existing amino acid biosensors and strategies for biosensor optimization are discussed. Finally, the importance of developing biosensors for amino acid derivatives is prospected.

Keywords: amino acid    biosensor    high-throughput screening    adaptive laboratory evolution    dynamic regulation    hyper-producing strain    

氨基酸是蛋白質(zhì)的基本組成單元,是一類具有重要應(yīng)用價值的生物基產(chǎn)品。氨基酸及其衍生物廣泛應(yīng)用于飼料、食品、醫(yī)藥等領(lǐng)域。其中,飼料氨基酸市場規(guī)模最大,占市場份額的50%?60%,食品氨基酸約占市場份額的30%,藥用、化妝品和其他用途氨基酸約占市場份額的15%[1]。2021年全球氨基酸產(chǎn)量超過1 000萬t,其中我國氨基酸產(chǎn)量超過600萬t,2026年全球氨基酸產(chǎn)值預(yù)計將達(dá)到296億美元,年復(fù)合增長率將達(dá)6%?8%[2]。

高水平的工業(yè)菌株被認(rèn)為是氨基酸生物制造的“芯片”。誘變篩選和代謝工程改造是創(chuàng)制氨基酸生產(chǎn)菌株,并持續(xù)提升菌株性能的常用技術(shù)手段。但是,由于對工業(yè)菌株生理和代謝調(diào)控機(jī)制的理解有限,缺乏有效的高產(chǎn)改造靶點,菌種生產(chǎn)水平的進(jìn)一步提高愈加困難,亟需新技術(shù)新方法。隨著合成生物技術(shù)和代謝工程朝著標(biāo)準(zhǔn)化、自動化和系統(tǒng)化的方向發(fā)展,可以在短時間內(nèi)設(shè)計構(gòu)建大量的工程菌株[3],因此急需準(zhǔn)確且高通量的檢測方法評價工程菌株的性能并篩選高產(chǎn)菌株。

生物傳感器(biosensor)是一種將化合物濃度轉(zhuǎn)化為電信號、熒光信號等易于檢測的信號的裝置,包含信號識別元件和信號輸出元件,可實現(xiàn)特定化合物的精確和高通量檢測[4]?;谠搩?yōu)勢,生物傳感器可輔助菌株的適應(yīng)性進(jìn)化(adaptive laboratory evolution, ALE),用于功能元件和菌株的高通量篩選(high-throughput screening)、代謝途徑的優(yōu)化與動態(tài)調(diào)控(dynamic regulation)、細(xì)胞成像(cell imaging)等[5-6]。近年來,國內(nèi)外的研究者在氨基酸生物傳感器的設(shè)計構(gòu)建、性能提升改造及應(yīng)用開展了大量研究,并取得了重要的進(jìn)展。本文首先介紹了氨基酸生物傳感器的種類和工作原理,總結(jié)了近年來氨基酸傳感器的挖掘、設(shè)計、構(gòu)建、應(yīng)用的研究進(jìn)展,并討論了目前氨基酸生物傳感器存在的問題及潛在解決方案,展望了開發(fā)氨基酸衍生物生物傳感器的重要性。

1 氨基酸生物傳感器的分類及工作原理

氨基酸生物傳感器是一類專一性識別氨基酸的生物傳感器[7],可分為基于轉(zhuǎn)錄調(diào)控因子(transcription factor, TF)、核糖體開關(guān)(riboswitch)、蛋白質(zhì)相互作用[例如熒光共振能量轉(zhuǎn)移(f?rster resonance energy transfer, FRET)],以及蛋白質(zhì)翻譯元件的生物傳感器等幾種類型,其工作原理和機(jī)制如圖 1所示。

圖 1 氨基酸生物傳感器及其工作原理Fig. 1 The working principles of different types of amino aicd biosensors. A:基于轉(zhuǎn)錄調(diào)控因子的生物傳感器. B:基于核糖體開關(guān)的生物傳感器. C:基于熒光共振能量轉(zhuǎn)移系統(tǒng)的生物傳感器. D:基于蛋白質(zhì)翻譯元件的生物傳感器[8] A: The biosensor based on trasncription factor (TF). When the intracellular concentration of effectors such as the alkaline amino acids is elevated, the TF LysG binds to the effector L-Lys and the complex binds to the lysE promoter to initiate the transcription of downstream gene. B: The biosensor based on riboswitch. When the intracellular concentration of effectors such as L-Lys is elevated, the aptamer of riboswitch binds to the effector L-Lys and undergoes structural change. The ribosome binding site (RBS) forms senior structure and the transcript of downstream gene cannot be translated. C: The biosensor based on F?rster resonance energy transfer (FRET). FRET-based biosensors consist of a donor domain (cyan fluorescent protein, CFP) and an acceptor domain (yellow fluorescent protein, YFP) which links to the N- and C-termini of the ligand-binding protein (LBP), respectively. When the effector L-Lys binds to the LBP, a conformation change shortens the distance between the donor and acceptor domains. The wavelength emitted by the donor domain excites the acceptor domain and produces detectable fluorescent signals. D: The biosensor based on translation machinery. Aminoacyl-tRNA synthetase (aaRS) specifically recognizes its corresponding amino acid and tRNA to generate corresponding aminoacyl-tRNA. Certain mutations in the amino acid-binding domain of aaRS can reduce the affinity to its corresponding amino acid and slow down the translation process and hinder cell growth. When the intracellular concentration of corresponding amino acid is elevated, the aaRS variant with poor affinity can synthesize enough aminoacyl-tRNAs and cell growth can be compensated. Figure 1D was adopted from the paper by Sun, et al[8].

第一類是基于TF及其調(diào)控結(jié)合的啟動子構(gòu)建的生物傳感器,以L-賴氨酸等堿性氨基酸的生物傳感器為例:當(dāng)細(xì)胞內(nèi)的氨基酸濃度較低時,轉(zhuǎn)錄調(diào)控因子LysG不能與L-賴氨酸結(jié)合,其所調(diào)控的報告基因不能表達(dá);當(dāng)胞內(nèi)的L-賴氨酸達(dá)到一定的濃度時,LysG與L-賴氨酸結(jié)合,導(dǎo)致LysG蛋白構(gòu)象發(fā)生變化,與其調(diào)控的啟動子結(jié)合,啟動熒光蛋白等報告基因的轉(zhuǎn)錄,從而產(chǎn)生熒光等信號,是一種誘導(dǎo)激活型的生物傳感器(圖 1A)[9]。當(dāng)然也存在阻遏型的生物傳感器,例如L-精氨酸的生物傳感器,當(dāng)細(xì)胞內(nèi)的L-精氨酸濃度較低時,轉(zhuǎn)錄調(diào)控因子ArgR不能與L-精氨酸結(jié)合,調(diào)控的報告基因表達(dá);當(dāng)細(xì)胞內(nèi)的L-精氨酸濃度升高時,ArgR與L-精氨酸結(jié)合,使ArgR構(gòu)象發(fā)生變化,進(jìn)而結(jié)合到調(diào)控基因的啟動子上,阻遏報告基因表達(dá)[10]。

第二類是基于mRNA 5′端非編碼區(qū)的核糖開關(guān)(riboswitch)構(gòu)建的生物傳感器,比如L-天冬氨酸激酶LysC的mRNA,當(dāng)胞內(nèi)的L-賴氨酸較高時,mRNA 5′端的核糖體開關(guān)能夠結(jié)合L-賴氨酸,此時對應(yīng)的核糖體結(jié)合位(ribosome binding site, RBS)形成頸環(huán)結(jié)構(gòu),核糖體不能與之結(jié)合,抑制下游基因表達(dá);當(dāng)細(xì)胞內(nèi)的L-賴氨酸較低時,不能與核糖體開關(guān)結(jié)合,核糖開關(guān)的構(gòu)象發(fā)生變化,釋放出RBS,進(jìn)而核糖體與RBS結(jié)合,啟動下游報告基因表達(dá)[11],這是一種典型的抑制型核糖體開關(guān)(圖 1B)。當(dāng)然,也存在激活型的核糖體開關(guān)[12-13]。

第三類是基于蛋白相互作用構(gòu)建的生物傳感器,這種生物傳感器一般由3個蛋白組分構(gòu)成,中間部分是效應(yīng)物結(jié)合蛋白,結(jié)合效應(yīng)物小分子后能夠發(fā)生構(gòu)象變化,從而使兩端的兩個熒光蛋白距離靠近,其中一個熒光蛋白受到激發(fā)后將能量轉(zhuǎn)移給另外一個熒光蛋白,當(dāng)兩個熒光蛋白距離較遠(yuǎn)時能量無法傳遞,從而可以根據(jù)熒光變化檢測效應(yīng)物小分子濃度(圖 1C)[14]。

第四類是近年來新發(fā)展的基于蛋白質(zhì)翻譯元件的生物傳感器,主要有基于稀有密碼子、氨酰tRNA合成酶和tRNA等3類。基于稀有密碼子的傳感器工作原理為:在熒光蛋白基因或抗生素抗性基因序列中增加稀有密碼子的數(shù)量,稀有密碼子的翻譯受到稀有的氨酰tRNA量的限制,當(dāng)胞內(nèi)的氨基酸濃度較低時,氨酰tRNA合成受限,導(dǎo)致熒光或抗性報告基因低水平表達(dá);外源添加氨基酸或增強(qiáng)內(nèi)源氨基酸合成,可提高稀有密碼子的翻譯速度,從而提高報告基因的表達(dá)水平,使細(xì)胞輸出更強(qiáng)的熒光信號或具有更強(qiáng)的抗生素抗性[15]?;诎滨RNA合成酶和tRNA構(gòu)建的傳感器工作原理與基于稀有密碼子的類似,通過突變氨酰tRNA合成酶,使其對氨基酸的親和力大幅降低,影響蛋白質(zhì)的合成速度,進(jìn)而與細(xì)胞的生長速度關(guān)聯(lián)起來(圖 1D)[8];同樣也可以修飾改造tRNA的反密碼子區(qū)域,使其與氨基酸之間氨?;磻?yīng)速度降低,影響蛋白質(zhì)合成和細(xì)胞生長,從而將胞內(nèi)氨基酸濃度信號轉(zhuǎn)化為易于檢測的細(xì)胞生長速度信號[16]。

2 氨基酸生物傳感器及其應(yīng)用

由于氨基酸市場需求日益增長,開發(fā)高效、準(zhǔn)確、快速的菌株篩選方法對加快氨基酸工業(yè)菌株的設(shè)計構(gòu)建和迭代升級尤為重要,氨基酸生物傳感器在其中發(fā)揮了重要的作用(表 1)。根據(jù)氨基酸的結(jié)構(gòu)和性質(zhì),氨基酸可分類為支鏈氨基酸、芳香族氨基酸、堿性氨基酸等。同類型的氨基酸因為具有相似的結(jié)構(gòu)和性質(zhì),通常共用一種生物傳感器。為了方便比較一類氨基酸的各類型生物傳感器的應(yīng)用效果,下面將分類介紹支鏈氨基酸、芳香族氨基酸、堿性氨基酸及其他氨基酸的生物傳感器的開發(fā)和應(yīng)用案例。

表 1 氨基酸生物傳感器及其應(yīng)用案例aTable 1 Summary of amino acid biosesnors and their applicationsa

Sensor Type Source Effector Signal Application References Lrp TF C. glutamicum L-valine, L-isoleucine, L-leucine, L-methionine eYFP, GFP, TetA HTS, ALE, dynamic regulation [17-21] TyrR TF E. coli L-phenylalanine, L-tryptophan, L-tyrosine GFP HTS [22-23] TrpR1V58E TF E. coli L-tryptophan GFP No [24] TrpR1V58K TF E. coli 5-hydroxytryptophan GFP No [24] LysG TF C. glutamicum L-lysine, L-arginine, L-histidine eYFP HTS, dynamic regulation [9, 25-28] LysGA219L TF C. glutamicum L-histidine eYFP HTS [29] LysGE123Y/E125A TF C. glutamicum L-lysine Red pigment HTS [30] LysGE58V TF C. glutamicum L-lysine, L-arginine, L-histidine eYFP HTS, dynamic regulation [31] ArgP TF E. coli L-arginine, L-canavanine eYFP No [32] ArgP TF E. coli L-arginine KanR HTS [33] ArgR TF C. crenatum L-arginine SacB HTS [10] NCgl0581 TF C. glutamicum L-serine eYFP HTS [34] CcdR TF P. ananatis L-cysteine GFP HTS [35] Ribo-Gly Riboswitch C. pasteurianum glycine HemB Dynamic regulation [36] Ribo-Lys Riboswitch B. subtilis, E. coli L-lysine GltA, LysE Dynamic regulation [11-12] Ribo-Trp Riboswitch Artifical construction L-tryptophan eYFP HTS [37] LAO-BP FRET E. coli L-lysine CFP, YFP Detection [14] iGlusnFr FRET Artifical construction L-glutamate cpGFP HTS [38] Rare codon Translation C. glutamicum, E. coli L-arginine, L-leucine, L-serine, L-proline KanR HTS [15, 39] aaRS Translation E. coli L-isoleucine Cell growth HTS [8] tRNA Translation C. glutamicum, E. coli L-tryptophan, L-cysteine, L-lysine, L-glutamate, and glycine KanR, GFP HTS [16] aHTS: High-throughput screening; ALE: Adaptive laboratory evolution; aaRS: Aminoacyl-tRNA synthetase.

2.1 支鏈氨基酸的生物傳感器

支鏈氨基酸包括L-纈氨酸、L-亮氨酸和L-異亮氨酸。Lrp是谷氨酸棒桿菌(Corynebacterium glutamicum)中響應(yīng)支鏈氨基酸和L-甲硫氨酸的轉(zhuǎn)錄調(diào)控因子,并根據(jù)氨基酸濃度變化激活外排蛋白BrnFE的表達(dá),以維持胞內(nèi)正常的氨基酸濃度[40]。Mustafi等[21]以Lrp為感應(yīng)蛋白(sensory protein),以增強(qiáng)的黃色熒光蛋白(enhanced yellow fluorescent protein, eYFP)作為報告系統(tǒng),構(gòu)建了可監(jiān)測胞內(nèi)L-纈氨酸濃度的生物傳感器。之后,研究者將該生物傳感器應(yīng)用于從隨機(jī)突變文庫中篩選可胞外積累支鏈氨基酸的突變菌株[18-21],以及在單細(xì)胞水平監(jiān)測細(xì)胞的L-纈氨酸合成能力差異[20]。Mahr等[19]使用該生物傳感器將胞內(nèi)的L-纈氨酸濃度轉(zhuǎn)化為eYFP的表達(dá)量,在ALE中,通過熒光激活的細(xì)胞分選(fluorescence activated cell sorting, FACS)篩選熒光信號較高的細(xì)胞,通過5代進(jìn)化和篩選,獲得了L-纈氨酸產(chǎn)量提升一倍的突變菌株,并鑒定到脲酶輔助蛋白UreD的關(guān)鍵突變位點。Stella等[41]在谷氨酸棒桿菌中利用PbrnFE啟動子調(diào)控生長必需基因的表達(dá),建立了菌株的生長速度與胞內(nèi)的L-纈氨酸濃度的正向關(guān)聯(lián),并對該菌株進(jìn)行ALE,經(jīng)過多次的傳代后,作者發(fā)現(xiàn)生長速率提高菌株的氨基酸產(chǎn)量并沒有提高,測序發(fā)現(xiàn)傳感器的啟動子發(fā)生了突變,導(dǎo)致了假陽性菌株的出現(xiàn);為了減少假陽性,作者利用PbrnFE啟動子同時調(diào)控生長必需基因和eyfp基因的表達(dá),結(jié)合FACS和平板生長篩選,獲得了若干L-纈氨酸產(chǎn)量提高的菌株,并通過基因組測序發(fā)現(xiàn)了關(guān)鍵的突變基因。Lai等[42]進(jìn)一步對Lrp調(diào)控的PbrnFE啟動子進(jìn)行突變,獲得了對L-異亮氨酸響應(yīng)增強(qiáng)的啟動子突變體,用于動態(tài)調(diào)控胞內(nèi)L-異亮氨酸的濃度,從而提高4-羥基-L-異亮氨酸的合成。由于感應(yīng)蛋白Lrp可以同時響應(yīng)3種結(jié)構(gòu)類似的支鏈氨基酸,在特定支鏈氨基酸菌株高通量篩選過程中,容易引入假陽性菌株,未來可以借助蛋白質(zhì)工程和高通量篩選方法對轉(zhuǎn)錄因子Lrp的響應(yīng)特異性進(jìn)行改造,獲得可以專一性響應(yīng)某一種支鏈氨基酸的Lrp突變體。

除了基于Lrp的支鏈氨基酸生物傳感器,近期,Sun等[8]利用氨基酸底物親和性改變的L-異亮氨酰tRNA合成酶突變體,偶聯(lián)胞內(nèi)L-異亮氨酸濃度與細(xì)胞的生長速度,開發(fā)了新型的特異的L-異亮氨酸生物傳感器,可有效實現(xiàn)L-異亮氨酸高產(chǎn)菌種的進(jìn)化篩選。相比于基于Lrp的生物傳感器,該生物傳感器僅識別L-異亮氨酸,不響應(yīng)L-纈氨酸和L-亮氨酸,具有特異性高的優(yōu)勢??紤]到20種蛋白質(zhì)氨基酸都具有特異的氨酰tRNA合成酶,該工作為其他氨基酸生物傳感器的開發(fā)提供了一種通用策略。

2.2 芳香族氨基酸的生物傳感器

芳香族氨基酸是一類含苯環(huán)類的氨基酸,包括L-苯丙氨酸、L-色氨酸和L-酪氨酸。TyrR是大腸桿菌(Escherichia coli)中響應(yīng)芳香族氨基酸的轉(zhuǎn)錄調(diào)控因子,當(dāng)胞內(nèi)的芳香族氨基酸濃度升高時,TyrR激活相應(yīng)的外排蛋白表達(dá),維持胞內(nèi)芳香族氨基酸的穩(wěn)態(tài)[43]。Mahr等[23]通過在大腸桿菌中構(gòu)建2 000個基因的啟動子文庫,結(jié)合FACS的高通量篩選方法,篩選到一個可以響應(yīng)L-苯丙氨酸的啟動子Pmtr,利用其調(diào)控因子TyrR作為信號感應(yīng)蛋白,綠色熒光蛋白(green fluorescent protein, GFP)作為報告系統(tǒng),構(gòu)建了L-苯丙氨酸的生物傳感器,并成功應(yīng)用于L-苯丙氨酸高產(chǎn)菌株的高通量篩選。Liu等[22]利用TyrR及其調(diào)控的啟動子PtyrP控制黃色熒光蛋白YFP的表達(dá),構(gòu)建了L-苯丙氨酸的生物傳感器,應(yīng)用于L-苯丙氨酸合成途徑關(guān)鍵酶的進(jìn)化篩選。Gong等[24]在大腸桿菌中構(gòu)建了基于轉(zhuǎn)錄調(diào)控因子TrpR1和PtrpO1啟動子的生物傳感器,并通過定向進(jìn)化技術(shù)對TrpR1進(jìn)行改造,獲得了響應(yīng)L-色氨酸及其衍生物5-羥基-L-色氨酸的突變體TrpR1V58E和TrpR1V58K,并進(jìn)一步通過對TrpR1的DNA結(jié)合位點trpO進(jìn)行序列改造,獲得了對效應(yīng)物響應(yīng)濃度范圍變寬的傳感器。

除了以上基于轉(zhuǎn)錄調(diào)控因子構(gòu)建的芳香族氨基酸傳感器外,Liu等[37]在大腸桿菌中以YFP作為報告系統(tǒng),構(gòu)建了L-色氨酸的核糖體開關(guān),并成功應(yīng)用于L-色氨酸高產(chǎn)菌株的高通量篩選,獲得一株產(chǎn)量提高166%的菌株,并通過基因組測序鑒定了相應(yīng)的高產(chǎn)靶點。最近Guo等[16]對tRNA關(guān)鍵結(jié)構(gòu)進(jìn)行修飾,降低氨?;?tRNA合成酶催化tRNA的氨基酰化水平,開發(fā)了基于蛋白質(zhì)翻譯元件的新型氨基酸生物傳感器。作者通過在熒光蛋白基因或抗生素抗性基因序列中加入密碼子UAG,與正常的tRNA相比,相應(yīng)的氨?;?tRNA合成酶對修飾后的tRNACAU的識別催化能力大幅降低,當(dāng)胞內(nèi)的氨基酸濃度較低時,氨酰tRNA合成受限,導(dǎo)致熒光或抗性報告基因低水平表達(dá)。外源添加氨基酸或增強(qiáng)內(nèi)源氨基酸合成,可提高蛋白質(zhì)的翻譯速度,從而提高報告基因的表達(dá)水平,使細(xì)胞輸出更強(qiáng)的熒光信號或具有更強(qiáng)的抗生素抗性。利用該原理,作者設(shè)計了L-色氨酸、L-半胱氨酸、L-谷氨酸、L-賴氨酸和甘氨酸等5種氨基酸的生物傳感器,通過基于生長和/或FACS的篩選,分別從大腸桿菌和谷氨酸棒桿菌的隨機(jī)突變庫中篩選出相應(yīng)氨基酸的高產(chǎn)菌。該研究提供了一種蛋白質(zhì)氨基酸生物傳感器構(gòu)建的通用策略,結(jié)合密碼子拓展策略,有望設(shè)計構(gòu)建非天然氨基酸(non-canonical amino acids, ncAA)的生物傳感器。

2.3 堿性氨基酸的生物傳感器

堿性氨基酸包括L-組氨酸、L-精氨酸和L-賴氨酸。LysG是谷氨酸棒桿菌中響應(yīng)堿性氨基酸的轉(zhuǎn)錄調(diào)控因子,當(dāng)胞內(nèi)堿性氨基酸濃度升高時,LysG可激活外排蛋白LysE的表達(dá),啟動相應(yīng)氨基酸外排,以維持胞內(nèi)堿性氨基酸的穩(wěn)態(tài)[28]。Binder等[9]使用LysG和eYFP構(gòu)建了L-賴氨酸生物傳感器,鑒定了其對胞內(nèi)L-賴氨酸的線性響應(yīng)范圍為5?25 mmol/L,并通過FACS從隨機(jī)突變文庫中篩選獲得了L-賴氨酸產(chǎn)生菌株,通過基因組測序鑒定了關(guān)鍵突變位點。該生物傳感器還被用于篩選L-賴氨酸、L-精氨酸和L-組氨酸合成關(guān)鍵酶的突變體文庫,獲得了解除反饋抑制和催化活性提升的突變體[26-27]。Stella等[25]將基于LysG和eYFP構(gòu)建的生物傳感器應(yīng)用于需鈉弧菌(Vibrio natriegens)中,通過FACS從隨機(jī)突變文庫中篩選到L-賴氨酸、L-精氨酸和L-組氨酸產(chǎn)生菌株。

近期,Pu等[31]為了進(jìn)一步提升L-賴氨酸生物傳感器的性能,對LysG進(jìn)行了改造。通過對效應(yīng)物結(jié)合域(effector binding domian, EBD)和DNA結(jié)合域(DNA binding domian, DBD)間的柔性鉸鏈區(qū)(linker helix, LH)進(jìn)行定向進(jìn)化,篩選獲得了效應(yīng)物特異性不變,但響應(yīng)輸出信號更強(qiáng)和操作范圍更寬的LysG突變體。利用LysG突變體構(gòu)建的L-賴氨酸生物傳感器,在L-賴氨酸合成關(guān)鍵酶的高通量篩選和代謝途徑的動態(tài)調(diào)控中展示出更佳的應(yīng)用效果。該研究為TF型氨基酸生物傳感器的性能提升提供了一種新的策略。

由于LysG同時響應(yīng)3種堿性氨基酸,效應(yīng)物特異性較差,且LysG對3種堿性氨基酸的響應(yīng)親和力差別較大,對L-組氨酸的親和力比L-精氨酸和L-賴氨酸的親和力高兩個數(shù)量級[29],難以應(yīng)用于某一種堿性氨基酸高產(chǎn)菌株的精準(zhǔn)篩選。針對該問題,Della Corte等[29]解析了LysG及其與L-精氨酸復(fù)合體的晶體結(jié)構(gòu);通過分子對接,分別計算模擬出LysG與3種堿性氨基酸的結(jié)合位點,進(jìn)一步通過組合定點突變文庫構(gòu)建結(jié)合FACS高通量篩選方法,經(jīng)過3輪正篩和反篩后,獲得了一個只響應(yīng)L-組氨酸,而不響應(yīng)L-賴氨酸和L-精氨酸的突變體LysGA219L,并利用該突變體構(gòu)建了L-組氨酸生物傳感器,篩選到若干可以提高L-組氨酸產(chǎn)量的關(guān)鍵酶突變體。最近Liu等[30]利用類似的策略,篩選到一個只響應(yīng)L-賴氨酸,而不響應(yīng)L-精氨酸和L-組氨酸的突變體LysGE123Y/E125A,利用該突變體及其調(diào)控的啟動子PlysE表達(dá)番茄紅素合成關(guān)鍵基因crtI,構(gòu)建了專一響應(yīng)L-賴氨酸的生物傳感器,將谷氨酸棒桿菌胞內(nèi)的L-賴氨酸濃度轉(zhuǎn)化成有顏色的番茄紅素濃度;進(jìn)一步通過對PlysE啟動子的改造和表達(dá)L-賴氨酸轉(zhuǎn)運(yùn)蛋白LysE,將該生物傳感器對L-賴氨酸的響應(yīng)濃度范圍提高至320 mmol/L,最終利用改造后的L-賴氨酸生物傳感器篩選到一株L-賴氨酸的高產(chǎn)菌株。未來也可通過同樣的策略獲得更多專一性響應(yīng)某一種氨基酸的生物傳感器。

Nandineni等[32]發(fā)現(xiàn)來源于大腸桿菌的轉(zhuǎn)錄調(diào)控因子ArgP,以eYFP作為報告系統(tǒng),通過胞外添加二肽實驗證明了該傳感器可響應(yīng)胞內(nèi)L-精氨酸及其類似物L(fēng)-刀豆氨酸的濃度變化,進(jìn)而調(diào)控L-精氨酸外排蛋白ArgO的表達(dá),維持胞內(nèi)L-精氨酸的穩(wěn)態(tài)。近期Jiang等[33]利用該TF,以卡那霉素抗性基因作為報告系統(tǒng),將大腸桿菌胞內(nèi)的精氨酸濃度轉(zhuǎn)化為細(xì)胞的生長信號,結(jié)合常壓室溫等離子體(atmospheric and room temperature plasma, ARTP)誘變,篩選到一株產(chǎn)量提高18.9%的L-精氨酸高產(chǎn)菌株。Xu等[10]利用來源于鈍齒棒桿菌(Corynebacterium crenatum)響應(yīng)L-精氨酸的轉(zhuǎn)錄調(diào)控因子ArgR及其調(diào)控的啟動子PargC,阻遏調(diào)控蔗糖果聚糖酶基因sacB (蔗糖致死基因)的表達(dá),構(gòu)建了L-精氨酸的生物傳感器,當(dāng)細(xì)胞內(nèi)的L-精氨酸濃度較低時,ArgR不能與L-精氨酸結(jié)合,sacB基因表達(dá),細(xì)胞不能在含有蔗糖的培養(yǎng)基上生長;當(dāng)細(xì)胞內(nèi)的L-精氨酸濃度升高時,ArgR與L-精氨酸結(jié)合,使ArgR構(gòu)象發(fā)生變化,進(jìn)而結(jié)合到調(diào)控的啟動子上,阻遏sacB基因的表達(dá),此時細(xì)胞能夠在含有蔗糖的培養(yǎng)基上生長。經(jīng)過菌株突變和蔗糖篩選,獲得了L-精氨酸產(chǎn)量提高35.0%的菌株。Zheng等[15]創(chuàng)新地開發(fā)了基于稀有密碼子的新型氨基酸生物傳感器,以L-精氨酸為例,在熒光蛋白基因或抗生素抗性基因等報告基因序列中增加大腸桿菌中L-精氨酸稀有密碼子AGG的數(shù)量,該稀有密碼子的翻譯受到稀有的L-精氨酰tRNA量的限制,當(dāng)胞內(nèi)L-精氨酸濃度較低時,L-精氨酰tRNA合成受限,導(dǎo)致報告基因低水平表達(dá);當(dāng)添加外源L-精氨酸或增強(qiáng)內(nèi)源L-精氨酸合成時,可提高L-精氨酰tRNA的量,提高稀有密碼子的翻譯速度,從而提高報告基因的表達(dá)水平,使細(xì)胞輸出更強(qiáng)的熒光信號或具有更強(qiáng)的抗生素抗性。該生物傳感器被用于篩選L-精氨酸、L-亮氨酸、L-絲氨酸和L-脯氨酸等的合成能力增強(qiáng)的大腸桿菌或谷氨酸棒桿菌,在其他氨基酸生產(chǎn)菌株的篩選中也具有應(yīng)用前景[15, 39]。

氨基酸生物傳感器除了直接應(yīng)用于相應(yīng)氨基酸生產(chǎn)菌株的高通量篩選,還可以間接應(yīng)用于其他化合物合成菌株的進(jìn)化篩選。例如,Yu等[44]構(gòu)建了高產(chǎn)4-羥基-L-異亮氨酸的谷氨酸棒桿菌,發(fā)現(xiàn)有大量的副產(chǎn)物L(fēng)-賴氨酸積累。為了提高目標(biāo)產(chǎn)物產(chǎn)量,同時減少副產(chǎn)物L(fēng)-賴氨酸積累,作者利用LysG及其調(diào)控的啟動子PlysE同時調(diào)控突變器基因cdd和熒光蛋白基因eyfp的表達(dá),當(dāng)細(xì)胞內(nèi)的L-賴氨酸積累到一定濃度時,啟動突變器基因的表達(dá),進(jìn)而使菌株發(fā)生隨機(jī)突變,同時檢測到熒光信號;相反,當(dāng)胞內(nèi)的L-賴氨酸濃度降低時,突變器基因不表達(dá),同時熒光蛋白信號減弱;經(jīng)過多輪的傳代和進(jìn)化篩選后,作者最終篩選到一株4-羥基-L-異亮氨酸產(chǎn)量提高了28.4%的菌株,并通過基因組測序,解析了菌株的高產(chǎn)靶點。

除了上述基于轉(zhuǎn)錄調(diào)控因子構(gòu)建的堿性氨基酸生物傳感器外,Zhou等[11-12]利用來源于大腸桿菌和枯草芽孢桿菌(Bacillus subtilis)的調(diào)控元件構(gòu)建了專一性響應(yīng)L-賴氨酸的核糖體開關(guān),應(yīng)用于L-賴氨酸合成的競爭途徑和轉(zhuǎn)運(yùn)途徑的動態(tài)調(diào)控,提高了L-賴氨酸的產(chǎn)量和糖酸轉(zhuǎn)化率。

2.4 其他氨基酸的生物傳感器

除了上述氨基酸生物傳感器外,目前發(fā)現(xiàn)的氨基酸生物傳感器還有甘氨酸、L-絲氨酸、L-甲硫氨酸、L-半胱氨酸和L-谷氨酸的傳感器。甘氨酸是合成5-氨基乙酰丙酸的前體化合物之一,Zhou等[36]利用來源于巴氏梭狀芽孢桿菌(Clostridium pasteurianum)的甘氨酸核糖體開關(guān)對5-氨基乙酰丙酸的合成途徑進(jìn)行動態(tài)調(diào)控,顯著性地提高了5-氨基乙酰丙酸的產(chǎn)量。Hong等[45]利用來源于枯草芽孢桿菌的甘氨酸核糖體開關(guān)對甘氨酸合成的關(guān)鍵酶丙氨酸-乙醛酸氨基轉(zhuǎn)移酶進(jìn)行了進(jìn)化篩選,成功篩選到酶活提高的突變體。Zhang等[34]利用來源于谷氨酸棒桿菌的轉(zhuǎn)錄調(diào)控因子NCgl0581、啟動子PNCgl0580和eYFP構(gòu)建了L-絲氨酸生物傳感器,并應(yīng)用于從隨機(jī)突變菌株文庫中篩選高產(chǎn)L-絲氨酸的突變株,最優(yōu)突變株的產(chǎn)量和轉(zhuǎn)化率較出發(fā)菌株分別提高了35.9%和66.7%。Mustafi等[21]發(fā)現(xiàn)來源于谷氨酸棒桿菌的轉(zhuǎn)錄因子Lrp除了響應(yīng)L-亮氨酸、L-異亮氨酸和L-纈氨酸外,同時還響應(yīng)L-甲硫氨酸,且對L-甲硫氨酸的響應(yīng)親和力最高,未來可以利用其構(gòu)建L-甲硫氨酸的生物傳感器,應(yīng)用于L-甲硫氨酸高產(chǎn)菌株的高通量篩選。近期Gao等[35]從菠蘿泛菌(Pantoea ananatis)中克隆到一個響應(yīng)L-半胱氨酸的轉(zhuǎn)錄因子CcdR,利用其調(diào)控的啟動子PccdA表達(dá)gfp,構(gòu)建了L-半胱氨酸的生物傳感器;對轉(zhuǎn)錄因子CcdR進(jìn)行定向進(jìn)化改造,獲得了對L-半胱氨酸響應(yīng)動態(tài)范圍大幅提高的突變體生物傳感器,最后成功地應(yīng)用到L-半胱氨酸合成途徑關(guān)鍵酶和高產(chǎn)菌株的高通量篩選,獲得若干可以提高L-半胱氨酸積累的關(guān)鍵酶突變體和高產(chǎn)菌株。最近,Jian等[38]利用一個特殊的L-谷氨酸結(jié)合蛋白GluBP連接上一個GFP構(gòu)建了L-谷氨酸的生物傳感器,其工作原理與前面提到的FRET類似,當(dāng)谷氨酸達(dá)到一定濃度后,與GluBP結(jié)合,進(jìn)而GluBP的構(gòu)象發(fā)生變化,激發(fā)GFP發(fā)出熒光信號;最后將該傳感器應(yīng)用到L-谷氨酸菌株的高通量篩選中,獲得了谷氨酸產(chǎn)量提高55.4%的高產(chǎn)菌株。

3 氨基酸前體化合物的生物傳感器及其應(yīng)用

除了直接響應(yīng)和檢測氨基酸的生物傳感器,開發(fā)氨基酸合成前體化合物的生物傳感器,也可間接地實現(xiàn)特定氨基酸的檢測,對氨基酸菌株的構(gòu)建和篩選同樣具有重要的意義。如圖 2所示,20種蛋白質(zhì)氨基酸的前體主要位于糖酵解途徑(Embden Meyerhof Parnas pathway, EMP)、磷酸戊糖途徑(pentose phosphate pathway, PPP)和三羧酸循環(huán)(tricarboxylic acid cycle, TCA cycle)等中心代謝途徑。PPP中間物核糖-5-磷酸(ribose-5-phosphate, R5P)的衍生物5-磷酸核糖-1-焦磷酸(5-phospho-α-D-ribose-1-diphosphate, PRPP)是L-組氨酸的合成前體;以3-磷酸-甘油酸(glycerate-3-phosphate, 3PG)為前體的氨基酸包括甘氨酸、L-絲氨酸和L-半胱氨酸;以磷酸烯醇式丙酮酸(phosphoenolpyruvate, PEP)和D-赤蘚糖-4-磷酸(D-erythrose-4-phosphate, E4P)為共同前體的氨基酸包括L-酪氨酸、L-色氨酸和L-苯丙氨酸;以丙酮酸(pyruvate)為前體的氨基酸包括L-丙氨酸、L-纈氨酸和L-亮氨酸;以TCA循環(huán)中的2-酮戊二酸(2-oxoglutarate)為前體的氨基酸包括L-谷氨酸、L-谷氨酰胺、L-精氨酸和L-脯氨酸;以草酰乙酸(oxaloacetate)為前體的氨基酸包括L-天冬氨酸、L-天冬酰胺、L-賴氨酸、L-甲硫氨酸、L-蘇氨酸和L-異亮氨酸。

圖 2 氨基酸及其前體化合物的生物合成途徑Fig. 2 Biosythetic pathway of amino aicds and their precursors. The precursors of 20 proteinogenic amino acids are highlighted in blue.

近些年,研究人員設(shè)計和構(gòu)建了上述中心代謝途徑中的一些關(guān)鍵化合物的生物傳感器,并成功應(yīng)用到高產(chǎn)菌株的篩選和代謝途徑的動態(tài)調(diào)控。例如,Ding等[46]基于蛋白配體結(jié)構(gòu)域的穩(wěn)定性,構(gòu)建了PRPP的生物傳感器。該傳感器以人源的次黃嘌呤-鳥嘌呤磷酸核糖轉(zhuǎn)移酶(hypoxanthine-guanine phosphoribosyltransferase, HGPRT)為配體結(jié)合域,以熒光蛋白為信號輸出域,兩者之間通過一段多肽連接。其工作原理是當(dāng)沒有配體小分子PRPP時,HGPRT的配體結(jié)合域因沒有結(jié)合小分子,結(jié)構(gòu)不穩(wěn)定導(dǎo)致連接的熒光蛋白降解;而當(dāng)小分子PRPP存在時,配體結(jié)合域與小分子結(jié)合,結(jié)構(gòu)穩(wěn)定,熒光蛋白表達(dá)。作者進(jìn)一步以HGPRT蛋白作為模板,根據(jù)配體結(jié)合位置重新理性設(shè)計活性口袋,獲得可識別E4P和3PG的突變體;最后,結(jié)合FACS篩選提高了E4P生物傳感器的響應(yīng)強(qiáng)度,并成功應(yīng)用于篩選高產(chǎn)L-苯丙氨酸的菌株。未來3PG的生物傳感器可應(yīng)用于3PG下游氨基酸(甘氨酸、L-絲氨酸和L-半胱氨酸)合成碳代謝流的動態(tài)調(diào)控,以期平衡菌株生長和氨基酸合成所需的碳流,使更多碳流流向氨基酸合成,提高氨基酸合成的轉(zhuǎn)化率。這項研究中3個化合物的生物傳感器均基于同一個蛋白設(shè)計而成,為小分子生物傳感器的設(shè)計及開發(fā)提供了一種策略,特別是對于無轉(zhuǎn)錄調(diào)控因子、無合適或未知結(jié)合蛋白的分子而言,提供了一種構(gòu)建其生物傳感元件的方法,為實時動態(tài)監(jiān)測EMP和PPP代謝提供了有效方法。

Xu等[47]利用大腸桿菌來源的丙酮酸響應(yīng)轉(zhuǎn)錄因子PdhR,在枯草芽孢桿菌中設(shè)計構(gòu)建了丙酮酸生物傳感器,進(jìn)一步通過突變以及改變PdhR在啟動子上的結(jié)合序列與位置,優(yōu)化了丙酮酸響應(yīng)基因回路的動態(tài)范圍,獲得丙酮酸激活型的基因回路。隨后,研究人員結(jié)合反義轉(zhuǎn)錄以及高通量篩選技術(shù),成功獲得丙酮酸抑制型的基因回路,從而獲得響應(yīng)胞內(nèi)丙酮酸的雙功能基因調(diào)控回路。最后,研究人員利用雙功能的丙酮酸生物傳感器設(shè)計反饋控制系統(tǒng),該系統(tǒng)使細(xì)胞能夠自發(fā)地響應(yīng)胞內(nèi)丙酮酸濃度,動態(tài)優(yōu)化中心碳代謝途徑的代謝流,從而將葡萄糖二酸的產(chǎn)量提高了154%。丙酮酸是連接EMP與TCA的關(guān)鍵中心代謝物,其一方面為多種化合物的合成提供碳骨架,另一方面進(jìn)入TCA為細(xì)胞生長提供能量與還原力。因此,構(gòu)建響應(yīng)胞內(nèi)丙酮酸濃度的生物傳感器,不僅有助于丙酮酸高產(chǎn)菌株以及丙酮酸為前體的高產(chǎn)菌株篩選,還有助于構(gòu)建基因回路實現(xiàn)碳中心代謝流的動態(tài)控制,促進(jìn)中心代謝衍生產(chǎn)物的高效合成。未來可以利用丙酮酸生物傳感器對L-丙氨酸、L-纈氨酸和L-亮氨酸等合成途徑進(jìn)行動態(tài)調(diào)控,驅(qū)動代謝流更多地流向目標(biāo)氨基酸的合成。

Hu等[48]利用來源于集胞藻(Synechocystis)的轉(zhuǎn)錄調(diào)控因子NdhR,以GFP為信號輸出,在大腸桿菌中構(gòu)建了2-酮戊二酸的生物傳感器,并對傳感器的性能進(jìn)行了優(yōu)化改造,最后利用該生物傳感器設(shè)計了分子開關(guān)對TCA循環(huán)關(guān)鍵節(jié)點檸檬酸合酶GltA進(jìn)行動態(tài)調(diào)控,提高了L-蘋果酸合成的轉(zhuǎn)化率。2-酮戊二酸是谷氨酸家族氨基酸合成的共同前體,將來可進(jìn)一步利用2-酮戊二酸生物傳感器對TCA循環(huán)進(jìn)行動態(tài)調(diào)控,以期平衡菌株生長和氨基酸合成所需的碳流,使更多碳流流向氨基酸合成,提高氨基酸合成的轉(zhuǎn)化率。最近也有研究人員構(gòu)建了EMP途徑另一關(guān)鍵代謝物果糖-1,6-二磷酸(fructose 1,6-bisphosphate, FBP)的生物傳感器,成功應(yīng)用于胞內(nèi)FBP濃度的監(jiān)測[49]及代謝途徑的動態(tài)調(diào)控,實現(xiàn)了甲羥戊酸的高效合成[50]。目前還沒有關(guān)于PEP和草酰乙酸生物傳感器的報道,未來可通過數(shù)據(jù)庫挖掘和定向進(jìn)化改造等手段構(gòu)建相應(yīng)的生物傳感器,對PEP節(jié)點代謝流的動態(tài)調(diào)控,以及天冬氨酸家族氨基酸生產(chǎn)菌株的高通量篩選具有重要的研究意義和應(yīng)用價值。

4 總結(jié)與展望

氨基酸及其前體化合物的生物傳感器在功能元件和高產(chǎn)菌株的高通量篩選、適應(yīng)性進(jìn)化和代謝途徑動態(tài)調(diào)控中展示出了重要的應(yīng)用,因此近年來受到越來越多的關(guān)注。各種氨基酸生物傳感器,由于其工作原理不盡相同,在實際應(yīng)用中也具有不同的優(yōu)勢和限制。目前研究和應(yīng)用比較多的一類是基于轉(zhuǎn)錄調(diào)控因子構(gòu)建的生物傳感器,由于可響應(yīng)的氨基酸種類多,響應(yīng)的動態(tài)范圍、操作范圍、響應(yīng)閾值等性能優(yōu)異,且較容易實現(xiàn)進(jìn)一步的改造提升,所以被廣泛應(yīng)用。然而,該類生物傳感器對氨基酸的響應(yīng)特異性較差,篩選中容易引入假陽性。基于核糖體開關(guān)的生物傳感器對氨基酸的響應(yīng)靈敏度和響應(yīng)特異性高,但是操作范圍和動態(tài)范圍較小,難以應(yīng)用于代謝途徑的動態(tài)調(diào)控;且目前僅發(fā)現(xiàn)少數(shù)幾種氨基酸的核糖體開關(guān),其特異性改造和傳感性能提升的難度較大?;诘鞍紫嗷プ饔玫陌被嵘飩鞲衅鞣N類有限,其信號調(diào)節(jié)和輸出的范圍有待優(yōu)化,此類傳感器僅可用于檢測,無法用于動態(tài)調(diào)控。近年來發(fā)展起來的基于蛋白翻譯元件的氨基酸生物傳感器,在效應(yīng)物特異性及通用性上展示出了獨特的優(yōu)勢,并在高產(chǎn)菌種進(jìn)化篩選中取得了很好的應(yīng)用效果,后期通過進(jìn)一步的優(yōu)化改造,有望構(gòu)建獲得全部20種氨基酸的生物傳感器。針對現(xiàn)有氨基酸生物傳感器存在的問題,未來可以從以下幾個方面進(jìn)一步地開展研究。

第一,一些重要氨基酸的生物傳感器仍有待開發(fā)。盡管目前大部分的蛋白質(zhì)氨基酸已有相應(yīng)生物傳感器的報道,但是部分氨基酸,例如L-天冬氨酸、L-蘇氨酸、L-脯氨酸、L-谷氨酰胺和L-天冬酰胺,它們的生物傳感器仍未見報道,對其高產(chǎn)菌株的篩選產(chǎn)生了一定的影響。近年來,研究者們發(fā)展了多種挖掘和改造可響應(yīng)特定化合物的轉(zhuǎn)錄調(diào)控因子的有效策略。(1) 從組學(xué)數(shù)據(jù)挖掘:例如Li等[51]通過3-脫氫莽草酸高產(chǎn)和低產(chǎn)菌株的比較轉(zhuǎn)錄組分析,挖掘到一個能特異性感應(yīng)3-脫氫莽草酸的轉(zhuǎn)錄調(diào)控因子CusR,構(gòu)建了生物傳感器,應(yīng)用于高產(chǎn)菌株的高通量篩選。(2) 從一些生長代謝能力強(qiáng)、富含轉(zhuǎn)錄調(diào)控因子的菌株中挖掘:例如Hanko等[52]從一株化學(xué)無機(jī)自養(yǎng)型細(xì)菌鉤蟲貪銅菌(Cupriavidus necator)基因組中挖掘到16個潛在響應(yīng)不同化合物的LysR家族轉(zhuǎn)錄調(diào)控因子(LysR-type transcritonal regulator, LTTR),其中包含可響應(yīng)L-苯丙氨酸、L-酪氨酸、γ-氨基丁酸、β-丙氨酸,以及芳香族化合物(苯甲酸和水楊酸)等氨基酸和衍生物的LTTR。(3) 通過理性設(shè)計和定向進(jìn)化改變轉(zhuǎn)錄調(diào)控因子的可識別效應(yīng)物:例如Snoek等[53]對響應(yīng)粘康酸的轉(zhuǎn)錄調(diào)控因子BenM進(jìn)行了定向進(jìn)化,結(jié)合FACS高通量篩選方法,獲得了可響應(yīng)己二酸的突變體。未來可以通過以上策略挖掘和構(gòu)建更多種類的氨基酸生物傳感器。

第二,部分氨基酸生物傳感器的性能仍需提升以滿足實際應(yīng)用的需求。部分氨基酸生物傳感器對目標(biāo)化合物的響應(yīng)特異性(specificity)、靈敏度(sensitivity)、操作范圍(operational range)、動態(tài)范圍(dynamic range)和響應(yīng)閾值(threshold)等性能有限,難以滿足高水平工業(yè)菌株的高通量篩選和代謝途徑動態(tài)調(diào)控等需求,需要進(jìn)一步地提升改造[54-55]。不同于野生菌株或低水平生產(chǎn)菌株,一些氨基酸工業(yè)菌株已經(jīng)具備高效的產(chǎn)物合成能力,其胞內(nèi)的氨基酸濃度已經(jīng)達(dá)到較高的水平。因此,生物傳感器在工業(yè)菌株中應(yīng)用時其響應(yīng)強(qiáng)度很容易飽和,難以應(yīng)用于高產(chǎn)菌株的進(jìn)一步改造提升。另一方面,部分氨基酸生物傳感器的響應(yīng)特異性較差,可同時響應(yīng)多種氨基酸,在實際篩選過程中容易引入大量的假陽性菌株,干擾目標(biāo)菌株的篩選。因此,構(gòu)建專一性響應(yīng)某一種氨基酸的生物傳感,同時提高其對效應(yīng)物的綜合響應(yīng)性能是未來氨基酸及其衍生物生物傳感器研究的一個重要方向。

第三,開發(fā)氨基酸衍生物的生物傳感器。大宗氨基酸如L-谷氨酸和L-賴氨酸的市場日漸飽和,而高附加值的小品種氨基酸和一些新型的氨基酸衍生物市場逐漸崛起,例如以L-谷氨酸為前體的衍生物(L-茶氨酸[56]、1,4-二氨基丁烷[57]、4-氨基-1-丁醇[58]、γ-氨基丁酸[59]、2-吡咯烷酮[60]、L-瓜氨酸[61]、L-鳥苷酸[62]、5-氨基乙酰丙酸[63]、腐胺[64]和尿苷[65])、以L-賴氨酸為前體的衍生物(1,5-戊二胺[66]、1,5-二氨基戊烷、L-哌啶酸[67]、戊二酸[68]和1,5-戊二醇[69])、環(huán)化氨基酸(依克多因,又名四氫嘧啶[70])和羥基化氨基酸(4-羥基-L-異亮氨酸[71]和羥基依克多因[72])等。開發(fā)這些氨基酸衍生物的生物傳感器,并應(yīng)用于合成途徑關(guān)鍵功能元件和高產(chǎn)菌株的篩選,對提升這些化合物的生產(chǎn)水平,促進(jìn)大宗氨基酸的高值化具有重要的意義。

參考文獻(xiàn)

[1]

周文娟, 付剛, 齊顯尼, 鄭小梅, 房歡, 夏苗苗, 張大偉, 王欽宏, 鄭平, 王鈺, 孫際賓. 發(fā)酵工業(yè)菌種的迭代創(chuàng)制. 生物工程學(xué)報, 2022, 38(11): 4200-4218.
ZHOU WJ, FU G, Qi XN, ZHENG XM, FANG H, XIA MM, ZHANG DW, WANG QH, ZHENG P, WANG Y, SUN JB. Upgrading microbial strains for fermentation industry. Chinese Journal of Biotechnology, 2022, 38(11): 4200-4218 (in Chinese). DOI:10.13345/j.cjb.220611

[2]

R S. Amino acids global market trajectory & analytics MCP-1691[EB/OL]. [2022-12-14]. https://www.strategyr.com/market-report-amino-acids-forecasts-globalindustry-analysts-inc.asp.

[3]

WANG Y, LIU Y, LIU J, GUO YM, FAN LW, NI XM, ZHENG XM, WANG M, ZHENG P, SUN JB, MA YH. MACBETH: multiplex automated Corynebacterium glutamicum base editing method. Metabolic Engineering, 2018, 47: 200-210. DOI:10.1016/j.ymben.2018.02.016

[4]

TURNER AP. Biosensors. Current Opinion in Biotechnology, 1994, 5(1): 49-53. DOI:10.1016/S0958-1669(05)80069-2

[5]

YU WW, XU XH, JIN K, LIU YF, LI JH, DU GC, LV XQ, LIU L. Genetically encoded biosensors for microbial synthetic biology: from conceptual frameworks to practical applications. Biotechnology Advances, 2023, 62: 108077. DOI:10.1016/j.biotechadv.2022.108077

[6]

ZENG WZ, GUO LK, XU S, CHEN J, ZHOU JW. High-throughput screening technology in industrial biotechnology. Trends in Biotechnology, 2020, 38(8): 888-906. DOI:10.1016/j.tibtech.2020.01.001

[7]

馬倩, 夏利, 譚淼, 孫全偉, 楊蒙雅, 張穎, 陳寧. 氨基酸生產(chǎn)的代謝工程研究進(jìn)展與發(fā)展趨勢. 生物工程學(xué)報, 2021, 37(5): 1677-1696.
MA Q, XIA L, TAN M, SUN QW, YANG MY, ZHANG Y, CHEN N. Advances and prospects in metabolic engineering for the production of amino acids. Chinese Journal of Biotechnology, 2021, 37(5): 1677-1696 (in Chinese). DOI:10.13345/j.cjb.200588

[8]

SUN X, LI QG, WANG Y, ZHOU WJ, GUO YM, CHEN JZ, ZHENG P, SUN JB, MA YH. Isoleucyl-tRNA synthetase mutant based whole-cell biosensor for high-throughput selection of isoleucine overproducers. Biosensors and Bioelectronics, 2021, 172: 112783. DOI:10.1016/j.bios.2020.112783

[9]

BINDER S, SCHENDZIELORZ G, ST?BLER N, KRUMBACH K, HOFFMANN K, BOTT M, EGGELING L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): R40. DOI:10.1186/gb-2012-13-5-r40

[10]

XU MJ, LIU PP, CHEN JM, PENG AQ, YANG TW, ZHANG X, XU ZH, RAO ZM. Development of a novel biosensor-driven mutation and selection system via in situ growth of Corynebacterium crenatum for the production of L-arginine. Frontiers in Bioengineering and Biotechnology, 2020, 8: 175. DOI:10.3389/fbioe.2020.00175

[11]

ZHOU LB, ZENG AP. Exploring L-lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum. ACS Synthetic Biology, 2015, 4(6): 729-734. DOI:10.1021/sb500332c

[12]

ZHOU LB, ZENG AP. Engineering a L-lysine-ON riboswitch for metabolic control of L-lysine production in Corynebacterium glutamicum. ACS Synthetic Biology, 2015, 4(12): 1335-1340. DOI:10.1021/acssynbio.5b00075

[13]

SUDARSAN N, WICKISER JK, NAKAMURA S, EBERT MS, BREAKER RR. An mRNA structure in bacteria that controls gene expression by binding lysine. Genes & Development, 2003, 17(21): 2688-2697.

[14]

FROMMER WB, DAVIDSON MW, CAMPBELL RE. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833-2841. DOI:10.1039/b907749a

[15]

ZHENG B, MA XY, WANG N, DING TT, GUO LW, ZHANG XR, YANG Y, LI C, HUO YX. Utilization of rare codon-rich markers for screening amino acid overproducers. Nature Communications, 2018, 9: 3616. DOI:10.1038/s41467-018-05830-0

[16]

GUO H, MA X, WANG N, DING T, ZHENG B, GUO L, HUANG C, ZHANG W, SUN L, HUO YX. A tRNA modification-based strategy for identifying amino acid overproducers(AMINO). bioRxiv, 2022. DOI:10.1101/2022.11.21.517450

[17]

TAN SY, SHI F, LIU HY, YU XP, WEI SY, FAN ZY, LI YF. Dynamic control of 4-hydroxyisoleucine biosynthesis by modified L-isoleucine biosensor in recombinant Corynebacterium glutamicum. ACS Synthetic Biology, 2020, 9(9): 2378-2389. DOI:10.1021/acssynbio.0c00127

[18]

HAN GQ, XU N, SUN XP, CHEN JZ, CHEN C, WANG Q. Improvement of L-valine production by atmospheric and room temperature plasma mutagenesis and high-throughput screening in Corynebacterium glutamicum. ACS Omega, 2020, 5(10): 4751-4758. DOI:10.1021/acsomega.9b02747

[19]

MAHR R, G?TGENS C, G?TGENS J, POLEN T, KALINOWSKI J, FRUNZKE J. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184-194. DOI:10.1016/j.ymben.2015.09.017

[20]

MUSTAFI N, GRüNBERGER A, MAHR R, HELFRICH S, N?H K, BLOMBACH B, KOHLHEYER D, FRUNZKE J. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731. DOI:10.1371/journal.pone.0085731

[21]

MUSTAFI N, GRüNBERGER A, KOHLHEYER D, BOTT M, FRUNZKE J. The development and application of a single-cell biosensor for the detection of L-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449-457. DOI:10.1016/j.ymben.2012.02.002

[22]

LIU Y, ZHUANG Y, DING D, XU Y, SUN J, ZHANG D. Biosensor-based evolution and elucidation of a biosynthetic pathway in Escherichia coli. ACS Synthetic Biology, 2017, 6(5): 837-848. DOI:10.1021/acssynbio.6b00328

[23]

MAHR R, von BOESELAGER RF, WIECHERT J, FRUNZKE J. Screening of an Escherichia coli promoter library for a L-phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15): 6739-6753. DOI:10.1007/s00253-016-7575-8

[24]

GONG XY, ZHANG RH, WANG J, YAN YJ. Engineering of a TrpR-based biosensor for altered dynamic range and ligand preference. ACS Synthetic Biology, 2022, 11(6): 2175-2183. DOI:10.1021/acssynbio.2c00134

[25]

STELLA RG, BAUMANN P, LORKE S, MüNSTERMANN F, WIRTZ A, WIECHERT J, MARIENHAGEN J, FRUNZKE J. Biosensor-based isolation of amino acid-producing Vibrio natriegens strains. Metabolic Engineering Communications, 2021, 13: e00187. DOI:10.1016/j.mec.2021.e00187

[26]

KORTMANN M, MACK C, BAUMGART M, BOTT M. Pyruvate carboxylase variants enabling improved lysine production from glucose identified by biosensor-based high-throughput fluorescence-activated cell sorting screening. ACS Synthetic Biology, 2019, 8(2): 274-281. DOI:10.1021/acssynbio.8b00510

[27]

SCHENDZIELORZ G, DIPPONG M, GRüNBERGER A, KOHLHEYER D, YOSHIDA A, BINDER S, NISHIYAMA C, NISHIYAMA M, BOTT M, EGGELING L. Taking control over control: use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21-29. DOI:10.1021/sb400059y

[28]

BELLMANN A, VRLJI? M, PáTEK M, SAHM H, KR?MER R, EGGELING L. Expression control and specificity of the basic amino acid exporter LysE of Corynebacterium glutamicum. Microbiology, 2001, 147(7): 1765-1774. DOI:10.1099/00221287-147-7-1765

[29]

DELLA CORTE D, van BEEK HL, SYBERG F, SCHALLMEY M, TOBOLA F, CORMANN KU, SCHLICKER C, BAUMANN PT, KRUMBACH K, SOKOLOWSKY S, MORRIS CJ, GRüNBERGER A, HOFMANN E, SCHR?DER GF, MARIENHAGEN J. Engineering and application of a biosensor with focused ligand specificity. Nature Communications, 2020, 11: 4851. DOI:10.1038/s41467-020-18400-0

[30]

LIU J, XU JZ, RAO ZM, ZHANG WG. An enzymatic colorimetric whole-cell biosensor for high-throughput identification of lysine overproducers. Biosensors and Bioelectronics, 2022, 216: 114681. DOI:10.1016/j.bios.2022.114681

[31]

PU W, CHEN JZ, LIU P, SHEN J, CAI NY, LIU BY, LEI Y, WANG LX, NI XM, ZHANG J, LIU J, ZHOU YY, ZHOU WJ, MA HW, WANG Y, ZHENG P, SUN JB. Directed evolution of linker helix as an efficient strategy for engineering LysR-type transcriptional regulators as whole-cell biosensors. Biosensors and Bioelectronics, 2023, 222: 115004. DOI:10.1016/j.bios.2022.115004

[32]

NANDINENI MR, GOWRISHANKAR J. Evidence for an L-arginine exporter encoded by yggA (ArgO) that is regulated by the LysR-type transcriptional regulator ArgP in Escherichia coli. Journal of Bacteriology, 2004, 186(11): 3539-3546. DOI:10.1128/JB.186.11.3539-3546.2004

[33]

JIANG S, WANG RR, WANG DH, ZHAO CG, MA Q, WU HY, XIE XX. Metabolic reprogramming and biosensor-assisted mutagenesis screening for high-level production of L-arginine in Escherichia coli. Metabolic Engineering, 2023, 76: 146-157. DOI:10.1016/j.ymben.2023.02.003

[34]

ZHANG X, ZHANG XM, XU GQ, ZHANG XJ, SHI JS, XU ZH. Integration of ARTP mutagenesis with biosensor-mediated high-throughput screening to improve L-serine yield in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2018, 102(14): 5939-5951. DOI:10.1007/s00253-018-9025-2

[35]

GAO JS, DU MH, ZHAO JH, ZHANG Y, XU N, DU HM, JU JS, WEI L, LIU J. Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Metabolic Engineering, 2022, 73: 144-157. DOI:10.1016/j.ymben.2022.07.007

[36]

ZHOU LB, REN J, LI ZD, NIE JL, WANG C, ZENG AP. Characterization and engineering of a Clostridium glycine riboswitch and its use to control a novel metabolic pathway for 5-aminolevulinic acid production in Escherichia coli. ACS Synthetic Biology, 2019, 8(10): 2327-2335. DOI:10.1021/acssynbio.9b00137

[37]

LIU YF, YUAN HL, DING DQ, DONG HN, WANG QH, ZHANG DW. Establishment of a biosensor-based high-throughput screening platform for tryptophan overproduction. ACS Synthetic Biology, 2021, 10(6): 1373-1383. DOI:10.1021/acssynbio.0c00647

[38]

JIAN XJ, GUO XJ, CAI ZS, WEI LF, WANG LY, XING XH, ZHANG C. Single-cell microliter-droplet screening system (MISS cell): an integrated platform for automated high-throughput microbial monoclonal cultivation and picking. Biotechnology and Bioengineering, 2023, 120(3): 778-792. DOI:10.1002/bit.28300

[39]

LONG MF, XU MJ, MA ZF, PAN XW, YOU JJ, HU MK, SHAO Y, YANG TW, ZHANG X, RAO ZM. Significantly enhancing production of trans-4-hydroxy-L-proline by integrated system engineering in Escherichia coli. Science Advances, 2020, 6(21): eaba2383. DOI:10.1126/sciadv.aba2383

[40]

LANGE C, MUSTAFI N, FRUNZKE J, KENNERKNECHT N, WESSEL M, BOTT M, WENDISCH VF. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for L-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231-241. DOI:10.1016/j.jbiotec.2011.06.003

[41]

STELLA RG, GERTZEN CGW, SMITS SHJ, G?TGENS C, POLEN T, NOACK S, FRUNZKE J. Biosensor-based growth-coupling and spatial separation as an evolution strategy to improve small molecule production of Corynebacterium glutamicum. Metabolic Engineering, 2021, 68: 162-173. DOI:10.1016/j.ymben.2021.10.003

[42]

LAI WM, SHI F, TAN SY, LIU HY, LI YF, XIANG YH. Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2022, 106(13-16): 5105-5121. DOI:10.1007/s00253-022-12034-6

[43]

PITTARD J, CAMAKARIS H, YANG J. The TyrR regulon. Molecular Microbiology, 2004, 55(1): 16-26. DOI:10.1111/j.1365-2958.2004.04385.x

[44]

YU XP, SHI F, LIU HY, TAN SY, LI YF. Programming adaptive laboratory evolution of 4-hydroxyisoleucine production driven by a lysine biosensor in Corynebacterium glutamicum. AMB Express, 2021, 11(1): 1-14. DOI:10.1186/s13568-020-01157-6

[45]

HONG KQ, ZHANG J, JIN B, CHEN T, WANG ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microbial Cell Factories, 2022, 21(1): 1-17. DOI:10.1186/s12934-021-01718-9

[46]

DING DQ, LI JL, BAI DY, FANG H, LIN JP, ZHANG DW. Biosensor-based monitoring of the central metabolic pathway metabolites. Biosensors and Bioelectronics, 2020, 167: 112456. DOI:10.1016/j.bios.2020.112456

[47]

XU XH, LI XL, LIU YF, ZHU YL, LI JH, DU GC, CHEN J, LEDESMA-AMARO R, LIU L. Pyruvate-responsive genetic circuits for dynamic control of central metabolism. Nature Chemical Biology, 2020, 16(11): 1261-1268. DOI:10.1038/s41589-020-0637-3

[48]

HU GP, LI ZH, MA DL, YE C, ZHANG LP, GAO C, LIU LM, CHEN XL. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nature Catalysis, 2021, 4(5): 395-406. DOI:10.1038/s41929-021-00606-0

[49]

KOBERSTEIN JN, STEWART ML, SMITH CB, TARASOV AI, ASHCROFT FM, STORK PJS, GOODMAN RH. Monitoring glycolytic dynamics in single cells using a fluorescent biosensor for fructose 1,6-bisphosphate. Proceedings of the National Academy of Sciences of United States of America, 2022, 119(31): e2204407119. DOI:10.1073/pnas.2204407119

[50]

ZHU Y, LI Y, XU Y, ZHANG J, MA LL, QI QS, WANG Q. Development of bifunctional biosensors for sensing and dynamic control of glycolysis flux in metabolic engineering. Metabolic Engineering, 2021, 68: 142-151. DOI:10.1016/j.ymben.2021.09.011

[51]

LI LP, TU R, SONG GT, CHENG J, CHEN WJ, LI L, WANG LX, WANG QH. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening. ACS Synthetic Biology, 2019, 8(2): 297-306. DOI:10.1021/acssynbio.8b00317

[52]

HANKO EKR, PAIVA AC, JONCZYK M, ABBOTT M, MINTON NP, MALYS N. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nature Communications, 2020, 11: 1213. DOI:10.1038/s41467-020-14941-6

[53]

SNOEK T, CHABERSKI EK, AMBRI F, KOL S, BJ?RN SP, PANG B, BARAJAS JF, WELNER DH, JENSEN MK, KEASLING JD. Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Research, 2020, 48(1): e3. DOI:10.1093/nar/gkz954

[54]

MAHR R, FRUNZKE J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Applied Microbiology and Biotechnology, 2016, 100(1): 79-90. DOI:10.1007/s00253-015-7090-3

[55]

ZHANG J, PANG QX, WANG Q, QI QS, WANG Q. Modular tuning engineering and versatile applications of genetically encoded biosensors. Critical Reviews in Biotechnology, 2022, 42(7): 1010-1027. DOI:10.1080/07388551.2021.1982858

[56]

MA HK, FAN XG, CAI NY, ZHANG DZ, ZHAO GH, WANG T, SU R, YUAN M, MA Q, ZHANG CL, XU QY, XIE XX, CHEN N, LI YJ. Efficient fermentative production of L-theanine by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2020, 104(1): 119-130. DOI:10.1007/s00253-019-10255-w

[57]

TSUGE Y, MATSUZAWA H. Recent progress in production of amino acid-derived chemicals using Corynebacterium glutamicum. World Journal of Microbiology and Biotechnology, 2021, 37(3): 1-13.

[58]

PRABOWO CPS, SHIN JH, CHO JS, CHAE TU, LEE SY. Microbial production of 4-amino-1-butanol, a four-carbon amino alcohol. Biotechnology and Bioengineering, 2020, 117(9): 2771-2780. DOI:10.1002/bit.27438

[59]

WEI L, ZHAO JH, WANG YR, GAO JS, DU MH, ZHANG Y, XU N, DU HM, JU JS, LIU QD, LIU J. Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metabolic Engineering, 2022, 69: 134-146. DOI:10.1016/j.ymben.2021.11.010

[60]

XU MJ, GAO H, MA ZF, HAN J, ZHENG KY, SHAO ML, RAO ZM. Development of a 2-pyrrolidone biosynthetic pathway in Corynebacterium glutamicum by engineering an acetyl-CoA balance route. Amino Acids, 2022, 54(11): 1437-1450. DOI:10.1007/s00726-022-03174-0

[61]

JIANG S, WANG DH, WANG RR, ZHAO CG, MA Q, WU HY, XIE XY. Reconstructing a recycling and nonauxotroph biosynthetic pathway in Escherichia coli toward highly efficient production of L-citrulline. Metabolic Engineering, 2021, 68: 220-231. DOI:10.1016/j.ymben.2021.10.009

[62]

NIE LB, HE YT, HU LR, ZHU XD, WU XY, ZHANG B. Improvement in L-ornithine production from mannitol via transcriptome-guided genetic engineering in Corynebacterium glutamicum. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 1-13. DOI:10.1186/s13068-021-02095-6

[63]

CHEN JZ, WANG Y, GUO X, RAO DM, ZHOU WJ, ZHENG P, SUN JB, MA YH. Efficient bioproduction of 5-aminolevulinic acid, a promising biostimulant and nutrient, from renewable bioresources by engineered Corynebacterium glutamicum. Biotechnology for Biofuels, 2020, 13(1): 1-13. DOI:10.1186/s13068-019-1642-1

[64]

LI Z, SHEN YP, JIANG XL, FENG LS, LIU JZ. Metabolic evolution and a comparative omics analysis of Corynebacterium glutamicum for putrescine production. Journal of Industrial Microbiology and Biotechnology, 2018, 45(2): 123-139. DOI:10.1007/s10295-018-2003-y

[65]

WU HY, LI YJ, MA Q, LI Q, JIA ZF, YANG B, XU QY, FAN XG, ZHANG CL, CHEN N, XIE XX. Metabolic engineering of Escherichia coli for high-yield uridine production. Metabolic Engineering, 2018, 49: 248-256. DOI:10.1016/j.ymben.2018.09.001

[66]

KIM HT, BARITUGO KA, OH YH, HYUN SM, KHANG TU, KANG KH, JUNG SH, SONG BK, PARK K, KIM IK, LEE MO, KAM Y, HWANG YT, PARK SJ, JOO JC. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustainable Chemistry & Engineering, 2018, 6(4): 5296-5305.

[67]

ZHANG Y, AN N, ZHAO Y, LI XQ, SHEN XL, WANG J, SUN XX, YUAN QP. Efficient biosynthesis of α-aminoadipic acid via lysine catabolism in Escherichia coli. Biotechnology and Bioengineering, 2023, 120(1): 312-317. DOI:10.1002/bit.28256

[68]

HAN T, KIM GB, LEE SY. Glutaric acid production by systems metabolic engineering of an L-lysine-overproducing Corynebacterium glutamicum. Proceedings of the National Academy of Sciences of United States of America, 2020, 117(48): 30328-30334. DOI:10.1073/pnas.2017483117

[69]

CEN XC, LIU YJ, ZHU FH, LIU DH, CHEN Z. Metabolic engineering of Escherichia coli for high production of 1,5-pentanediol via a cadaverine-derived pathway. Metabolic Engineering, 2022, 74: 168-177. DOI:10.1016/j.ymben.2022.10.012

[70]

JIANG A, SONG YH, YOU J, ZHANG X, XU MJ, RAO ZM. High-yield ectoine production in engineered Corynebacterium glutamicum by fine metabolic regulation via plug-in repressor library. Bioresource Technology, 2022, 362: 127802. DOI:10.1016/j.biortech.2022.127802

[71]

WEI MH, LI GR, XIE HX, YANG WJ, XU HR, HAN SB, WANG JZ, MENG Y, XU QY, LI YJ, CHEN N, ZHANG CL. Sustainable production of 4-hydroxyisoleucine with minimised carbon loss by simultaneously utilising glucose and xylose in engineered Escherichia coli. Bioresource Technology, 2022, 354: 127196. DOI:10.1016/j.biortech.2022.127196

[72]

MA Q, XIA L, WU HY, ZHUO MY, YANG MY, ZHANG Y, TAN M, ZHAO KX, SUN QW, XU QY, CHEN N, XIE XX. Metabolic engineering of Escherichia coli for efficient osmotic stress-free production of compatible solute hydroxyectoine. Biotechnology and Bioengineering, 2022, 119(1): 89-101. DOI:10.1002/bit.27952

相關(guān)知識

Advances and prospects in metabolic engineering for the production of amino acids
The Development of a Chinese Healthy Eating Index and Its Application in the General Population
Research advances on effects of ursolic acid and oleanolic acid against hepatic steatosis and fibrosis
Bibliometric Analysis of Advances in mHealth Technology Application in Chronic Disease Management
Glossary – Nutrition: Science and Everyday Application
Compendium of Physical Activities:Content, Application and Development
A systematic review of the application of Wilson and Cleary health
Health consciousness and health behavior: the application of a new health consciousness scale
Neuroscience of Speech and Language Workshop Fosters Interdisciplinary Collaboration
Application and effects of health education and management in chronic disease prevention and treatment of elderly in community

網(wǎng)址: Advances of development and application amino acid biosensors http://m.gysdgmq.cn/newsview1887196.html

推薦資訊