首頁 資訊 我國茶園土壤酸化現(xiàn)狀、問題及調(diào)控途徑

我國茶園土壤酸化現(xiàn)狀、問題及調(diào)控途徑

來源:泰然健康網(wǎng) 時間:2026年01月15日 03:36

參考文獻 1

van Breemen N,Driscoll C T,Mulder J.Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature,1984,307(5952):599-604.

參考文獻 2

Krug E C,F(xiàn)rink C R.Acid rain on Acid soil:a new perspective[J]. Science,1983,221(4610):520-525.

參考文獻 3

Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.

參考文獻 4

Fan L,Han W.Soil respiration after forest conversion to tea gardens:a chronosequence study[J].Catena,2020,190:104532.

參考文獻 5

Yan P,Wu L Q,Wang D H,et al.Soil acidification in Chinese tea plantations[J].Science of The Total Environment,2020,715:136963.

參考文獻 6

Wang H,Xu R K,Wang N,et al.Soil acidification of alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere,2010,20(6):799-806.

參考文獻 7

楊廣容,王秀青,謝瑾,等.云南古茶園和現(xiàn)代茶園土壤養(yǎng)分與茶葉品質(zhì)成分關(guān)系的研究[J].茶葉科學(xué),2015,35(6):574-582.

參考文獻 8

Yan P,Chen S,F(xiàn)an L C,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

參考文獻 9

Alekseeva T,Alekseev A,Xu R K,et al.Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China[J]. Environmental Geochemistry and Health,2011,33(2):137-148.

參考文獻 10

Li S Y,Li H X,Yang C L,et al.Rates of soil acidification in tea plantations and possible causes[J].Agriculture,Ecosystems & Environment,2016,233:60-66.

參考文獻 11

倪康,廖萬有,伊?xí)栽?,等.我國茶園施肥現(xiàn)狀與減施潛力分析[J].植物營養(yǎng)與肥料學(xué)報,2019,25(3):421-432.

參考文獻 12

Chen S,Liang Z,Webster R,et al.A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment,2019,655:273-283.

參考文獻 13

Yang X D,Ni K,Shi Y,et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J].Agriculture,Ecosystems & Environment,2018,252:74-82.

參考文獻 14

Jiang W,Shen J,Li Y,et al.Contrasting change trends in dry and wet nitrogen depositions during 2011 to 2020:Evidence from an agricultural catchment in subtropical central China[J].Science of The Total Environment,2024,907:168094.

參考文獻 15

Wan Q,Xu R Q,Li X H.Proton release by tea plant(Camellia sinensis L.)roots as affected by nutrient solution concentration and pH[J].Plant,Soil and Enviroment,2012,58(9):429-434.

參考文獻 16

Wang Q,Mi Y,Yang Y,et al.Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea(Camellia sinensis)plant roots[J].Pedosphere,2018,28(5):804-813.

參考文獻 17

Pramanik P,Phukan M,Ghosh S,et al.Pruned tea bushes secrete more root exudates to influence microbiological properties in soil[J].Archives of Agronomy and Soil Science,2018,64(8):1172-1180.

參考文獻 18

Ruan J,Ma L,Shi Y,et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant(Camallia sinensis L.O.Kuntze)[J]. Plant and soil,2004,263:283-296.

參考文獻 19

Hu X F,Chen F S,Wine M L,et al.Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues[J]. Plant and Soil,2017,417:161-274.

參考文獻 20

Liu Y,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of southwest China[J].Agriculture,2023,13(4):849.

參考文獻 21

Yang X,Ma L,Ji L,et al.Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea(Camellia sinensis L.)plantation in China[J].Plant and Soil,2019,444(1-2):409-426.

參考文獻 22

Wang H,Zhang H,Zhao Y,et al.Soil acidification of alfisols influenced by nitrate and ammonium nitrogen level in tea plantation [J].International Journal of Agricultural and Biological Engineering,2018,11(4):168-172.

參考文獻 23

Ruan J Y,Zhang F S,Wong M H.Effect of nitrogen form and phosphorus source on the growth,nutrient uptake and rhizosphere soil property of Camellia sinensis L.[J].Plant and Soil,2000,223(1-2):65-73.

參考文獻 24

Wang J,Tu X,Zhang H,et al.Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil [J].Science of The Total Environment,2020,747:141340.

參考文獻 25

Zhu X,Shen J,Li Y,et al.Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China[J]. Environmental Pollution,2021,289:117870.

參考文獻 26

Shen J,Li Y,Liu X,et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J].Atmospheric Environment,2013,67:415-424.

參考文獻 27

Hu X F,Wu A Q,Wang F C,et al.The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg,Al,Ca,N,and P in tea plants of a subtropical plantation[J]. Environmental Monitoring and Assessment,2019,191:1-14.

參考文獻 28

Yu H,He N,Wang Q,et al.Development of atmospheric acid deposition in China from the 1990s to the 2010s[J]. Environmental Pollution,2017,231:182-190.

參考文獻 29

Xu Q,Wang Y,Ding Z,et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis)roots and leaves[J].Plant Physiology and Biochemistry,2017,115:141-151.

參考文獻 30

王海斌,陳曉婷,丁力,等.福建省安溪縣茶園土壤酸化對茶樹產(chǎn)量及品質(zhì)的影響[J].應(yīng)用與環(huán)境生物學(xué)報,2018,24(6):1398-1403.

參考文獻 31

Li Y,Huang J,Song X,et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J].Planta,2017,246(1):91-103.

參考文獻 32

Fung K F,Wong M H.Effects of soil pH on the uptake of Al,F(xiàn) and other elements by tea plants[J].Journal of the Science of Food and Agriculture,2002,82(1):146-152.

參考文獻 33

Lin S,Liu Z,Wang Y,et al.Soil acidification associated with changes in inorganic forms of N reduces the yield of tea(Camellia sinensis)[J].Archives of Agronomy and Soil Science,2023,69(9):1660-1673.

參考文獻 34

Zhang M,Zhou C,Huang C.Relationship between extractable metals in acid soils and metals taken up by tea plants[J]. Communications in Soil Science and Plant Analysis,2006,37(3-4):347-361.

參考文獻 35

Zhang L,Li Q,Ma L,et al.Characterization of fluoride uptake by roots of tea plants(Camellia sinensis L.O.Kuntze)[J]. Plant and Soil,2013,366(1-2):659-669.

參考文獻 36

Ding L,Hong L,Wang Y H,et al.Allelopathic effects of soil pH on nitrogen uptake,its utilization efficiency and soil enzymes in tea bush soil[J].Allelopathy Journal,2022,56(2):181-192.

參考文獻 37

Wang Y H,Hong L,Wang Y C,et al.Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves[J]. Allelopathy Journal,2022,55(1):51-60.

參考文獻 38

Yan P,Shen C,F(xiàn)an L,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

參考文獻 39

Zhang Y Y,Zhang J B,Chapman S J,et al.Tea plantation affects soil nitrogen transformations in subtropical China[J]. Journal of Soils and Sediments,2020,20(9):1-11.

參考文獻 40

Hayatsu M.The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J].Soil Science & Plant Nutrition,1993,39(2):219-226.

參考文獻 41

Han W,Kemmitt S J,Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J].Soil Biology & Biochemistry,2007,39(7):1468-1478.

參考文獻 42

Yu H,Han X,Zhang X,et al.Fertilizer-induced N2O and NO emissions in tea gardens and the main controlling factors:A recent three-decade data synthesis[J].Science of The Total Environment,2023,871:162054.

參考文獻 43

麻萬諸,朱康瑩,卓志清.酸化對茶園土壤礦物轉(zhuǎn)變及供鉀能力的影響[J].茶葉科學(xué),2023,43(1):17-26.

參考文獻 44

Wen B,Li L,Duan Y,et al.Zn,Ni,Mn,Cr,Pb and Cu in soil-tea ecosystem:The concentrations,spatial relationship and potential control[J].Chemosphere,2018,204:92-100.

參考文獻 45

ZhengX,Wu Y,Xu A,et al.Response ofsoil microbial communities and functions to long-term tea(Camellia sinensis L.)planting in a subtropicalregion[J].Forests,2023,14(7):1288.

參考文獻 46

Hu Y,Li H,Zhou Y,et al.Illumina MiSeq sequencing investigation on the contrasting rhizosphere soil bacterial community structures in tea orchard soil under different content of aluminium[J].All Life,2023,16(1):2206544.

參考文獻 47

Jamatia S K S,Chaudhuri P S.Earthworm community structure under tea plantations(Camellia sinensis)of Tripura(India)[J]. Tropical Ecology,2017,58(1):105-113.

參考文獻 48

Yin J,Chen H,Duan P,et al.Soil microbial communities as potential regulators of N2O sources in highly acidic soils[J].Soil Ecology Letters,2023,5(4):1-7.

參考文獻 49

Tang S,Liu Y,Zheng N,et al.Temporal variation in nutrient requirements of tea(Camellia sinensis)in China based on QUEFTS analysis[J].Scientific Reports,2020,10(1):1745.

參考文獻 50

馬立鋒,倪康,伊?xí)栽?,等.浙江茶園化肥減施增效技術(shù)模式及示范應(yīng)用效果[J].中國茶葉,2019,41(10):40-43.

參考文獻 51

吳曉榮,張蓓蓓,余云飛,等.硝化抑制劑對典型茶園土壤尿素硝化過程的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):2063-2070.

參考文獻 52

Wang J,Zhang B,Tian Y,et al.A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations[J].European Journal of Soil Biology,2018,88:36-40.

參考文獻 53

Jia X,Wang Y,Zhang Q,et al.Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality[J].Frontiers in Plant Science,2023,14:1179960.

參考文獻 54

朱悅?cè)?,林慧凌,張譽齡,等.鉀、鎂配施改良茶園土壤酸化的效果及其作用路徑[J].生態(tài)學(xué)雜志,2023,42(7):1554-1560.

參考文獻 55

Xie S,Yang F,F(xiàn)eng H,et al.Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations:evidence in nutrient contents and isotope fractionations[J].Science of The Total Environment,2020,762:143059.

參考文獻 56

吳志丹,江福英,陳玉真,等.安溪鐵觀音茶園化肥減施增效技術(shù)模式研究[J].茶葉學(xué)報,2021,62(4):179-184.

參考文獻 57

Xue D,Huang X,Yao H,et al.Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J].Journal of Environmental Sciences,2010,22(8):1253-1260.

參考文獻 58

Yan P,Zou Z,Zhang J,et al.Crop growth inhibited by overliming in tea plantations[J].Beverage Plant Research,2021,1(1):1-7.

參考文獻 59

吳洵.茶樹的鈣鎂營養(yǎng)及土壤調(diào)控[J].茶葉科學(xué),1994,14(2):115-121.

參考文獻 60

Fung K F,Wong M H.Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation[J]. Journal of the Science of Food and Agriculture,2004,84(12):1469-1477.

參考文獻 61

余跑蘭,孫永明,李小飛,等.施用白云石粉對茶園土壤酸化及茶葉品質(zhì)與產(chǎn)量的影響[J].茶葉通訊,2020,47(1):46-51.

參考文獻 62

Zhang S H,Wang Y,Hu J J,et al.Bamboo charcoal affects soil properties and bacterial community in tea plantations[J]. Open Life Sciences,2023,18(1):20220681.

參考文獻 63

趙麗芳,黃鵬武,陳翰,等.土壤調(diào)理劑與有機肥配施治理紅壤茶園土壤酸化與培育地力的效果[J].浙江農(nóng)業(yè)科學(xué),2022,63(11):2692-2695.

目錄contents

摘要

土壤酸化問題正在成為限制茶園土壤健康和茶葉優(yōu)質(zhì)高產(chǎn)的重要因素,然而,當(dāng)前對茶園土壤酸化的現(xiàn)狀、機制及調(diào)控途徑尚缺乏系統(tǒng)性總結(jié),制約了茶產(chǎn)業(yè)高質(zhì)量發(fā)展。對我國茶園土壤酸化現(xiàn)狀進行重點分析,系統(tǒng)闡述茶園土壤酸化的內(nèi)部機制和外部因素,解析了土壤酸化對茶樹生長、土壤元素轉(zhuǎn)化和生態(tài)系統(tǒng)過程的影響。針對茶園酸化土壤改良目標(biāo),提出酸化土壤的有效調(diào)控途徑,旨在為茶園土壤健康管理和茶產(chǎn)業(yè)綠色可持續(xù)發(fā)展提供依據(jù)。

Abstract

Soil acidification in tea gardens is becoming an increasingly important factor that limits the health of tea plantation soil and the quality of tea produced. However,there is currently a lack of a systematic summary of the current status, mechanisms and regulatory pathways of soil acidification in tea plantation,which restricts the high-quality development of the tea industry. This article focused on the analyzes the status of soil acidification in tea plantations in China. It systematically explained the internal mechanisms and external factors of soil acidification in the tea plantations,and analyzed the impact of soil acidification on tea tree growth,soil material cycling,and ecosystem processes. In response to the goal of tea garden acidification improvement,effective regulation pathways for tea garden acidified soil were proposed,aiming to provide a basis for the healthy management of tea garden soil and the green and sustainable development of the tea industry.

土壤酸化是指在自然和人為條件下土壤 pH 降低或交換性酸增加,使土壤酸中和容量降低的過程[1]。土壤酸化是一種普遍存在的自然現(xiàn)象,是土壤形成及發(fā)育中一個非常緩慢的過程。自然過程下,土壤酸化速率較慢,一般需要經(jīng)歷數(shù)十年甚至數(shù)百年土壤 pH 才會出現(xiàn)明顯降低,因此,在大多數(shù)情況下并不會對生態(tài)系統(tǒng)產(chǎn)生明顯的影響[2]。然而,農(nóng)業(yè)生產(chǎn)中高強度的氮肥施用和作物生產(chǎn)導(dǎo)致農(nóng)田土壤發(fā)生了嚴(yán)重的酸化,顯著影響了農(nóng)業(yè)生產(chǎn)和生態(tài)系統(tǒng)[3]。因此,客觀評估農(nóng)田土壤酸化狀況,提出調(diào)控土壤酸化的有效途徑,對人類社會可持續(xù)發(fā)展具有重要意義。

茶是重要的經(jīng)濟作物,中國是世界最大的茶葉生產(chǎn)國,茶葉生產(chǎn)對于經(jīng)濟民生至關(guān)重要。據(jù)報道,我國茶園生態(tài)系統(tǒng)發(fā)生了嚴(yán)重的土壤酸化,酸化程度較糧食作物和蔬菜生產(chǎn)系統(tǒng)更為嚴(yán)重,已經(jīng)成為茶產(chǎn)業(yè)綠色高質(zhì)量發(fā)展的一大阻礙[4]。本文旨在全面分析我國茶園土壤酸化現(xiàn)狀,系統(tǒng)闡述引起茶園土壤酸化的內(nèi)部機制和外部因素,解析土壤酸化對茶樹生長、土壤元素轉(zhuǎn)化和生態(tài)系統(tǒng)過程的影響,提出茶園酸化土壤的有效調(diào)控途徑,為茶園土壤健康管理和茶產(chǎn)業(yè)綠色可持續(xù)發(fā)展提供參考。

1 我國茶園土壤酸化現(xiàn)狀

1.1 茶園土壤酸化現(xiàn)狀

植茶導(dǎo)致了茶園土壤快速酸化。大量研究表明,典型地區(qū)茶園土壤 pH 顯著低于林地、耕地、園地等土地利用類型[4-5]。全國范圍的調(diào)查研究也表明,我國典型地區(qū)茶園土壤 pH 在 0~10、 10~20 和 20~30 cm 土層比鄰近自然森林土壤平均分別降低了 0.50、0.66 和 0.68;種茶歷史悠久的福建安溪茶園土壤(pH 4.22)相較于縣域內(nèi)耕地土壤(pH 5.29)和果蔬地土壤(pH 5.15)出現(xiàn)顯著酸化[5]。植茶不僅導(dǎo)致土壤活性酸增加,土壤潛在酸也顯著增加,土壤 pH 緩沖容量下降[6]。與現(xiàn)代茶園比較,古茶園土壤并未顯著酸化,現(xiàn)代茶園酸化有加快趨勢[7]。茶園土壤酸化不僅出現(xiàn)在表土層,表土層以下土層也表現(xiàn)出顯著酸化的趨勢。研究表明,與森林比較,短期的茶葉種植(10 年)茶園土壤酸化主要發(fā)生在 0~120 cm 土層,而隨著種植年限增加,茶園土壤的酸化發(fā)生在整個 0~200 cm 土層[8]。茶園各土層酸化程度存在差異,部分研究認(rèn)為表層土壤的酸化最為嚴(yán)重[9],也有研究指出表層以下土壤酸化更為嚴(yán)重[10]。

1.2 茶園土壤酸化的時空特征

從時間尺度來看,隨著植茶年限的增加,茶園土壤 pH 均呈下降趨勢[4]。1980 s 到 2000 s 的20~30 年間,我國典型地區(qū)茶園土壤整體呈酸化趨勢,福建安溪茶園土壤 pH 值平均降低 1.37,浙江松陽茶園土壤 pH 值平均降低 0.47,浙江武義茶園土壤 pH 值平均降低 1.43[5]。茶園土壤快速酸化可能與長期的茶樹種植和大量的化學(xué)氮肥施用直接相關(guān)[11]。

從空間尺度來看,全國茶園土壤酸化普遍。我國 19 個省份 225 個典型植茶縣的表層土壤評估結(jié)果表明,全國茶園土壤 pH 平均值僅為 4.68, pH<4.5 的點位達 46.0%,pH 在 4.5~5.5 的點位占 43.9%,pH>5.5 的茶園僅占 10.1%。全國不同省份茶園土壤酸化程度有所不同,主要產(chǎn)茶省份茶園土壤 pH 在 3.96~5.48,其中以江西省茶園土壤 pH 最低,平均值僅 3.96;江西、福建、重慶、廣西、貴州、四川、湖北和廣東 8 個?。ㄊ?、自治區(qū))植茶土壤 pH 平均值低于 4.5;云南、湖南、江蘇、山東、浙江、河南、安徽、陜西等省份茶園土壤 pH 值低于 5.5;江西、福建、重慶、廣西、湖北等省 (市、自治區(qū))茶園土壤 pH 低于 4.5 的樣點比例超過 50%;河南、安徽、浙江、江蘇、山東等省份土壤 pH 集中分布在 4.5~5.5[5]。不同地區(qū)間茶園土壤酸化程度的差異性與各地區(qū)土壤成土環(huán)境差異相關(guān),山東、河南、江蘇、陜西等北方茶區(qū)土壤以黃棕壤和棕壤為主,土壤鹽基離子豐富,酸緩沖容量大,pH 較高;而江西、福建、廣西和廣東等南方茶區(qū)以紅壤為主,土壤強淋溶發(fā)育,鹽基離子淋失較多,pH 較低[12]。

2 茶園土壤酸化的成因

茶園土壤酸化的成因既有內(nèi)部機制,也有外部因素。內(nèi)部機制主要是茶樹生長代謝和茶園土壤物質(zhì)循環(huán)[10],外部因素主要包括氮肥施用[13]和酸沉降[14]。

2.1 茶園土壤酸化的內(nèi)部機制

茶樹生長發(fā)育代謝過程是引起茶園土壤酸化的主要內(nèi)部機制。茶樹生長發(fā)育過程中樹體對陽離子吸收較多,茶樹根系選擇性吸收更多的銨態(tài)氮,尤其是茶樹屬于典型的聚鋁植物(吸收土壤中的活性 Al3+),茶樹根系吸收了大量的陽離子后通過釋放 H+ 維持樹體內(nèi)離子平衡,造成土壤酸化[15-16]。茶樹根系分泌有機酸也是導(dǎo)致土壤酸化的一個重要因素。茶樹代謝過程中產(chǎn)生的過量有機酸不易與鈣中和,通過根系分泌物排出,所以茶樹生長期和修剪后根系會分泌大量有機酸,根系分泌的有機酸具有較強的絡(luò)合能力及與陰離子競爭吸附點位能力,對于土壤的酸度有較大的影響,有機酸解離向土壤提供 H+,從而降低土壤 pH[17]。茶樹在生長發(fā)育過程中的凋落物和修剪枝葉含有大量鋁,分解進入土壤后會被有機酸和多酚類化合物活化,引起土壤中活性鋁含量增加,進一步造成土壤酸化[18]。

土壤物質(zhì)循環(huán)過程中氮素轉(zhuǎn)化、鹽基離子淋失和鋁離子累積等過程是引起茶園土壤酸化的重要內(nèi)部機制。土壤氮素硝化過程是造成土壤酸化的重要直接因素,土壤銨態(tài)氮發(fā)生硝化反應(yīng)由羥胺轉(zhuǎn)化為亞硝態(tài)氮的過程會釋放出 H+,造成土壤酸度的增加[15]。土壤鹽基離子(Ca2+、Mg2+、K+、Na+)淋失是導(dǎo)致茶園土壤酸化的重要原因,由于茶園一般分布于降水豐富的地區(qū),土壤淋溶作用強,強烈的淋溶作用使土壤鹽基陽離子逐漸淋失,交換性酸 (交換性氫和交換性鋁)逐漸形成,土壤呈酸性或強酸性反應(yīng)[6]。鋁在茶園土壤中的內(nèi)部循環(huán)和積累過程加快了土壤酸化,由于土壤硅鋁酸鹽崩解不斷釋放出鋁離子,茶樹枝葉中積累的大量鋁通過修剪過程歸還到土壤中,在分解過程中釋放出大量活性鋁,造成土壤中交換性和游離的鋁離子增加,從而導(dǎo)致土壤酸化[18-19]。

2.2 茶園土壤酸化的外部因素

氮肥施用是直接影響茶園土壤酸化最主要的外部因素。研究結(jié)果表明,施用氮肥會導(dǎo)致茶園土壤 pH 降低,不施氮肥的茶園土壤 pH 相對較高,隨著氮肥用量的增加和施肥年限的延長,茶園土壤酸化加劇[20-21]。從土壤的酸化速率來看,在不施氮肥條件下,茶園土壤 pH 下降速率約為每年 0.071,而施用高量氮肥條件下(596 kg/hm2),土壤 pH 下降速率達每年 0.083[13]。不同形態(tài)氮素肥料對茶園土壤酸化的程度不同,銨態(tài)氮肥較硝態(tài)氮肥具有更強的酸化能力,而茶園使用的肥料多為銨態(tài)氮肥,造成茶園土壤快速酸化[22]。Ruan 等[23] 研究指出,與施用銨態(tài)氮肥比較,施用硝態(tài)氮肥條件下,茶園土壤交換性鋁、交換性錳和交換性酸顯著降低,pH 值顯著更高。銨態(tài)氮肥中酸化能力最強的是硫酸銨,尿素和碳酸氫銨雖是中性肥,但大量施用也能導(dǎo)致土壤酸化[24]。

酸沉降是茶園土壤酸化的重要外部因素。茶園大量施用氮肥,通過氨揮發(fā)過程向大氣排放,氨 (NH3)和銨(NH4 +)通過干濕沉降方式產(chǎn)生進入茶園,參與土壤氮素循環(huán),成為茶園土壤酸化的重要因素[25-26]。酸沉降通過抑制土壤氮的固定和有機物分解,加速鹽基離子淋失,使土壤酸化加劇[27]。 1990 s 到 2010 s 的 20~30 年間,全國酸雨發(fā)生面積占比由 22.53% 上升至 30.45%,以南方各省市酸雨發(fā)生程度較高,與我國茶區(qū)的分布相一致[28]。因此,酸沉降必然導(dǎo)致茶園土壤酸化[14]。

3 茶園土壤酸化對茶樹生長和茶園生態(tài)的影響

3.1 茶園土壤酸化對茶樹生長和茶葉產(chǎn)量及品質(zhì)的影響

茶園土壤酸化直接影響了茶樹根系生長和養(yǎng)分吸收[29],從而間接影響茶樹地上部生長,特別是新梢的生長,最終影響茶葉的產(chǎn)量和品質(zhì)[30]。當(dāng)土壤 pH<4.0 時,茶樹根尖萎縮,生長受抑制[29],此時茶樹對氮、磷、鉀的吸收量急劇下降,茶樹發(fā)芽遲緩,新梢生長緩慢[31]。茶園土壤酸化還會通過影響土壤養(yǎng)分有效性間接影響茶樹生長。茶園土壤酸化導(dǎo)致土壤物理性狀惡化,鹽基離子加速淋失,土壤氮素形態(tài)轉(zhuǎn)化,從而降低了茶樹根系對 N、Ca、Mg、K 等養(yǎng)分的吸收,減少茶樹葉綠素合成,降低光合作用,影響產(chǎn)量和茶葉品質(zhì)[32-33];同時土壤酸化導(dǎo)致 Al、F、Pb 等元素活化,茶樹對有害物質(zhì)的積累增加[34-35]。Ding 等[36] 研究顯示,當(dāng)土壤 pH 值由 5.32 降低至 3.29 時,茶樹根際土壤脲酶、蛋白酶和天冬酰胺酶活性降低,茶樹的氮素生理利用率由 116.74% 降低至 89.79%。土壤酸化會破壞茶樹葉片細(xì)胞酸堿平衡,降低茶葉多酚物質(zhì)的合成,影響氨基酸合成與轉(zhuǎn)運,造成茶葉品質(zhì)下降[30]。一項對福建安溪茶園的調(diào)查發(fā)現(xiàn),隨著茶園土壤 pH 值的降低,茶園土壤銨態(tài)氮降低,硝態(tài)氮增加,茶葉產(chǎn)量和茶葉中茶多酚、茶氨酸、咖啡堿顯著降低[37]。

3.2 茶園土壤酸化對土壤元素轉(zhuǎn)化的影響

茶園土壤酸化顯著改變了土壤元素循環(huán)過程。土壤酸化總體上抑制了 N、P 轉(zhuǎn)化,降低其有效性,且不同程度改變其根際效應(yīng),從而影響茶園養(yǎng)分循環(huán)[38]。茶園土壤 pH 直接或間接影響了土壤氮素轉(zhuǎn)化相關(guān)微生物活性,從而影響氮素硝化和反硝化過程[33,39]。研究發(fā)現(xiàn),茶園土壤中硝化作用發(fā)生的下限 pH 大約為 2.9[40],且在強酸性茶園土壤中土壤硝化作用與土壤 pH 呈顯著正相關(guān)[41],土壤酸化可能導(dǎo)致茶園土壤硝化和反硝化基因豐度變化,茶園 NOx 和 N2O 排放增加[42]。茶園土壤酸化降低土壤砂粒和粉粒中云母、長石等含鉀礦物含量,促進土壤黏粒中 2∶1型(伊利石)礦物向 1∶1型礦物(高嶺石)的轉(zhuǎn)變,降低了土壤鉀素含量及潛在供鉀能力[43]。土壤酸化可以改變金屬元素的形態(tài),碳酸鹽結(jié)合態(tài)和殘留態(tài)金屬可以轉(zhuǎn)化為交換態(tài)和水溶態(tài),從而增強陽離子的有效性[44]。

3.3 茶園土壤酸化對生態(tài)系統(tǒng)的影響

茶園土壤生態(tài)系統(tǒng)過程顯著受到土壤酸化影響。土壤中絕大多數(shù)微生物都對酸敏感,所以在酸性條件下茶園土壤中微生物的種類和數(shù)量均較少,而且活性很低,使一些重要的微生物酶失活,或者使細(xì)胞的蛋白質(zhì)變性,影響土壤功能[45]。同時酸化土壤中高濃度的 Al,也會毒害微生物,使微生物的活性喪失[46]。土壤酸化可以降低茶園土壤大型動物的數(shù)量,隨著土壤 pH 降低,茶園土壤蚯蚓密度顯著降低[47]。然而,土壤酸化也能使一些嗜酸微生物的活性增強,增加土壤 N2O 的排放,增加了土壤基礎(chǔ)呼吸強度和通量[4,48],酸化可能導(dǎo)致全球氣候變暖和生態(tài)破壞問題加劇。

4 茶園土壤酸化調(diào)控途徑

酸化的本質(zhì)是土壤中的 H+ 累積,可通過 H+ 產(chǎn)生和消耗之間的平衡關(guān)系來調(diào)控土壤的酸化過程。從耕作管理調(diào)控降低土壤 H+ 的產(chǎn)生,添加堿性物質(zhì)中和土壤中過多的 H+ 是降低土壤酸化程度的兩類主要途徑。從茶葉生產(chǎn)實踐來看,合理施用肥料和堿性物質(zhì)是茶園土壤酸化調(diào)控的兩種主要農(nóng)藝途徑。

4.1 合理施用肥料

科學(xué)施肥是減緩人為因素造成茶園土壤酸化的有效措施。采用測土配方施肥技術(shù)、基于產(chǎn)量反應(yīng)和農(nóng)學(xué)效率的養(yǎng)分推薦方法等技術(shù)方法,根據(jù)土壤肥力狀況和茶樹養(yǎng)分需求,降低過量氮肥施用,減少氮肥硝化過程產(chǎn)生 H+,有效防治茶園土壤酸化[49-50]。通過氮肥形態(tài)的調(diào)整,采用部分硝態(tài)氮、有機氮替代銨態(tài)氮(酰胺態(tài)氮),減少生理酸性肥料的施用,能夠減少茶樹吸收氮產(chǎn)生 H+[23]。此外,采用脲酶抑制劑、硝化抑制劑等氮肥增效劑,通過改進緩控釋肥工藝,降低氮肥揮發(fā)損失和淋溶損失,延長肥效,輔助氮肥減量,從而減緩?fù)寥浪峄痆51-52]。通過采用深施、水肥一體化等方式減少氨的揮發(fā),能夠降低氮的沉降,減少酸的產(chǎn)生[53]。合理施用鉀、鎂肥,補充土壤鹽基離子,降低交換性 Al3+,提高土壤 pH[54]。施用有機肥、沼渣沼液及農(nóng)作物秸稈等有機物料,能夠減緩和平衡酸化茶園的土壤酸性。有機肥含有較多的堿性官能團,能夠中和土壤酸度,施用有機肥能夠增加土壤有機質(zhì),調(diào)節(jié)土壤酸堿緩沖能力[53,55]。例如,吳志丹等[56]在福建安溪的研究結(jié)果顯示,通過專用肥和有機替代等技術(shù)措施,能夠在減少化肥投入 33%~53% 的基礎(chǔ)上提高土壤 pH 0.34~0.58,提高茶葉產(chǎn)量 5.21%~9.18%。

4.2 施用堿性物質(zhì)

采用石灰可以迅速中和土壤活性酸,提高土壤 pH,且改良劑材料廉價易得,是茶園酸性土壤改良的重要手段[57]。但是,有研究指出,長期施用石灰石會加速土壤鉀、鎂離子浸出,導(dǎo)致土壤養(yǎng)分失衡,引起土壤板結(jié),停止施用后會出現(xiàn)更強的復(fù)酸化,對茶葉的產(chǎn)量和品質(zhì)提高也不明顯[58]。同時有研究指出,由于茶葉對鈣素較為敏感,過高的鈣含量或者不協(xié)調(diào)的 Ca/Mg 對于茶葉產(chǎn)量和品質(zhì)形成不利[59]。石灰能夠與土壤溶液中的氟形成 CaF2 沉淀,降低細(xì)胞壁或膜滲透性,從而降低茶樹對氟的吸收[60]。因此,學(xué)者提出采用白云石改良茶園土壤酸化效果較好,白云石中含有大量鈣、鎂離子,能夠增加土壤陽離子交換量,且白云石粒徑越小效果越好[61]。近年來,生物質(zhì)炭作為一種結(jié)構(gòu)良好的改良劑材料,對于茶園酸性土壤改良取得了良好的效益。生物質(zhì)炭能夠通過提高土壤 pH,從而增加磷、鉀和鎂的含量,降低銅和錳的有效性,從而提高茶樹的產(chǎn)量和品質(zhì)[62]。對于酸化茶園,每公頃施用 1125~2250 kg 硅鈣鉀鎂、牡蠣殼粉、海藻肥和腐植酸等改良劑,能夠顯著提升土壤 pH 值 0.12~0.41,提高交換性鹽基離子含量,有效改善土壤酸化[63]。

5 展望

茶園土壤酸化正在成為茶產(chǎn)業(yè)綠色高質(zhì)量發(fā)展的重要挑戰(zhàn)。對全國和區(qū)域茶園土壤酸化系統(tǒng)評估,指導(dǎo)開展科學(xué)的土壤酸化調(diào)控,成為當(dāng)前面臨的迫切需求。當(dāng)前茶園土壤酸化主要采用活性酸(pH)評估,由于茶園土壤中存在較多的活性鋁和交換性鋁,不能完全反映酸化的進程。很多研究直接計算多點位的土壤 pH 算術(shù)平均值,用于評估茶園土壤整體酸化程度,但是基于算術(shù)平均的計算方法對于掌握多樣點和土壤 pH 變異性較大時凸顯出明顯的不足。筆者認(rèn)為,對于一個相同供試土壤進行的同種處理試驗,其重復(fù)值采用直接算術(shù)平均求導(dǎo)得到其平均值,以表征土壤的酸度情況是可行的。對于大尺度多點位土壤 pH 數(shù)據(jù)的比較應(yīng)當(dāng)以中位數(shù)表征整體土壤的酸化情況較為適宜。另外,無論是自然土壤還是農(nóng)業(yè)土壤都緩慢或快速的酸化,由于茶園土壤具有較多的交換性鋁和活性鋁,從土壤 pH 緩沖容量的角度開展土壤酸度評估對于指導(dǎo)茶園土壤的改良更為重要。

對于區(qū)域茶園土壤酸化的現(xiàn)狀和趨勢評價,往往采用多點位數(shù)據(jù)的比較,或者采集相同區(qū)域內(nèi)不同植茶年限的土壤進行評估,這樣的研究是基于相同的施肥管理措施條件下的假設(shè),忽略了田塊尺度農(nóng)事操作在長期時間尺度的變異。近年來隨著茶葉種植規(guī)模的擴張,多點位土壤數(shù)據(jù)的趨勢比較必須增強對土地利用變化因素的考量,以避免因為土地利用變化產(chǎn)生的趨勢測量誤差。從國家尺度來看,建立不同生態(tài)區(qū)茶園的長期定位監(jiān)測點,系統(tǒng)研究和揭示植茶過程和施肥管理等對全國茶園土壤酸化影響的長期趨勢十分重要。

茶園土壤酸化的成因與茶樹特性和人為耕作管理等因素相關(guān),然而,當(dāng)前的研究仍然無法系統(tǒng)評估在不同尺度上各影響因素的貢獻,尤其是茶樹吸收積累鋁較多,鋁素吸收累積遷移過程在茶園土壤酸化中的作用不能忽視,因此,需要在系統(tǒng)層面開展茶園土壤酸化貢獻率的研究,才能更好地指導(dǎo)、調(diào)控和治理茶園土壤酸化。

茶園土壤酸化的調(diào)控和改良,既需要考慮酸性土壤改良的實際效果,又必須從茶樹生產(chǎn)特征出發(fā),兼顧茶葉的產(chǎn)量、品質(zhì)和茶園土壤的綜合健康。從茶葉生產(chǎn)實踐來看,必須科學(xué)認(rèn)識茶園土壤酸化的長期性,通過系統(tǒng)性的土壤調(diào)控策略,農(nóng)機農(nóng)藝產(chǎn)品結(jié)合的方式,才能真正將技術(shù)應(yīng)用落地。

參考文獻

[1] van Breemen N,Driscoll C T,Mulder J.Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature,1984,307(5952):599-604.

[2] Krug E C,F(xiàn)rink C R.Acid rain on Acid soil:a new perspective[J]. Science,1983,221(4610):520-525.

[3] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.

[4] Fan L,Han W.Soil respiration after forest conversion to tea gardens:a chronosequence study[J].Catena,2020,190:104532.

[5] Yan P,Wu L Q,Wang D H,et al.Soil acidification in Chinese tea plantations[J].Science of The Total Environment,2020,715:136963.

[6] Wang H,Xu R K,Wang N,et al.Soil acidification of alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere,2010,20(6):799-806.

[7] 楊廣容,王秀青,謝瑾,等.云南古茶園和現(xiàn)代茶園土壤養(yǎng)分與茶葉品質(zhì)成分關(guān)系的研究[J].茶葉科學(xué),2015,35(6):574-582.

[8] Yan P,Chen S,F(xiàn)an L C,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

[9] Alekseeva T,Alekseev A,Xu R K,et al.Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China[J]. Environmental Geochemistry and Health,2011,33(2):137-148.

[10] Li S Y,Li H X,Yang C L,et al.Rates of soil acidification in tea plantations and possible causes[J].Agriculture,Ecosystems & Environment,2016,233:60-66.

[11] 倪康,廖萬有,伊?xí)栽?,等.我國茶園施肥現(xiàn)狀與減施潛力分析[J].植物營養(yǎng)與肥料學(xué)報,2019,25(3):421-432.

[12] Chen S,Liang Z,Webster R,et al.A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment,2019,655:273-283.

[13] Yang X D,Ni K,Shi Y,et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J].Agriculture,Ecosystems & Environment,2018,252:74-82.

[14] Jiang W,Shen J,Li Y,et al.Contrasting change trends in dry and wet nitrogen depositions during 2011 to 2020:Evidence from an agricultural catchment in subtropical central China[J].Science of The Total Environment,2024,907:168094.

[15] Wan Q,Xu R Q,Li X H.Proton release by tea plant(Camellia sinensis L.)roots as affected by nutrient solution concentration and pH[J].Plant,Soil and Enviroment,2012,58(9):429-434.

[16] Wang Q,Mi Y,Yang Y,et al.Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea(Camellia sinensis)plant roots[J].Pedosphere,2018,28(5):804-813.

[17] Pramanik P,Phukan M,Ghosh S,et al.Pruned tea bushes secrete more root exudates to influence microbiological properties in soil[J].Archives of Agronomy and Soil Science,2018,64(8):1172-1180.

[18] Ruan J,Ma L,Shi Y,et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant(Camallia sinensis L.O.Kuntze)[J]. Plant and soil,2004,263:283-296.

[19] Hu X F,Chen F S,Wine M L,et al.Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues[J]. Plant and Soil,2017,417:161-274.

[20] Liu Y,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of southwest China[J].Agriculture,2023,13(4):849.

[21] Yang X,Ma L,Ji L,et al.Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea(Camellia sinensis L.)plantation in China[J].Plant and Soil,2019,444(1-2):409-426.

[22] Wang H,Zhang H,Zhao Y,et al.Soil acidification of alfisols influenced by nitrate and ammonium nitrogen level in tea plantation [J].International Journal of Agricultural and Biological Engineering,2018,11(4):168-172.

[23] Ruan J Y,Zhang F S,Wong M H.Effect of nitrogen form and phosphorus source on the growth,nutrient uptake and rhizosphere soil property of Camellia sinensis L.[J].Plant and Soil,2000,223(1-2):65-73.

[24] Wang J,Tu X,Zhang H,et al.Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil [J].Science of The Total Environment,2020,747:141340.

[25] Zhu X,Shen J,Li Y,et al.Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China[J]. Environmental Pollution,2021,289:117870.

[26] Shen J,Li Y,Liu X,et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J].Atmospheric Environment,2013,67:415-424.

[27] Hu X F,Wu A Q,Wang F C,et al.The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg,Al,Ca,N,and P in tea plants of a subtropical plantation[J]. Environmental Monitoring and Assessment,2019,191:1-14.

[28] Yu H,He N,Wang Q,et al.Development of atmospheric acid deposition in China from the 1990s to the 2010s[J]. Environmental Pollution,2017,231:182-190.

[29] Xu Q,Wang Y,Ding Z,et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis)roots and leaves[J].Plant Physiology and Biochemistry,2017,115:141-151.

[30] 王海斌,陳曉婷,丁力,等.福建省安溪縣茶園土壤酸化對茶樹產(chǎn)量及品質(zhì)的影響[J].應(yīng)用與環(huán)境生物學(xué)報,2018,24(6):1398-1403.

[31] Li Y,Huang J,Song X,et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J].Planta,2017,246(1):91-103.

[32] Fung K F,Wong M H.Effects of soil pH on the uptake of Al,F(xiàn) and other elements by tea plants[J].Journal of the Science of Food and Agriculture,2002,82(1):146-152.

[33] Lin S,Liu Z,Wang Y,et al.Soil acidification associated with changes in inorganic forms of N reduces the yield of tea(Camellia sinensis)[J].Archives of Agronomy and Soil Science,2023,69(9):1660-1673.

[34] Zhang M,Zhou C,Huang C.Relationship between extractable metals in acid soils and metals taken up by tea plants[J]. Communications in Soil Science and Plant Analysis,2006,37(3-4):347-361.

[35] Zhang L,Li Q,Ma L,et al.Characterization of fluoride uptake by roots of tea plants(Camellia sinensis L.O.Kuntze)[J]. Plant and Soil,2013,366(1-2):659-669.

[36] Ding L,Hong L,Wang Y H,et al.Allelopathic effects of soil pH on nitrogen uptake,its utilization efficiency and soil enzymes in tea bush soil[J].Allelopathy Journal,2022,56(2):181-192.

[37] Wang Y H,Hong L,Wang Y C,et al.Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves[J]. Allelopathy Journal,2022,55(1):51-60.

[38] Yan P,Shen C,F(xiàn)an L,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

[39] Zhang Y Y,Zhang J B,Chapman S J,et al.Tea plantation affects soil nitrogen transformations in subtropical China[J]. Journal of Soils and Sediments,2020,20(9):1-11.

[40] Hayatsu M.The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J].Soil Science & Plant Nutrition,1993,39(2):219-226.

[41] Han W,Kemmitt S J,Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J].Soil Biology & Biochemistry,2007,39(7):1468-1478.

[42] Yu H,Han X,Zhang X,et al.Fertilizer-induced N2O and NO emissions in tea gardens and the main controlling factors:A recent three-decade data synthesis[J].Science of The Total Environment,2023,871:162054.

[43] 麻萬諸,朱康瑩,卓志清.酸化對茶園土壤礦物轉(zhuǎn)變及供鉀能力的影響[J].茶葉科學(xué),2023,43(1):17-26.

[44] Wen B,Li L,Duan Y,et al.Zn,Ni,Mn,Cr,Pb and Cu in soil-tea ecosystem:The concentrations,spatial relationship and potential control[J].Chemosphere,2018,204:92-100.

[45] ZhengX,Wu Y,Xu A,et al.Response ofsoil microbial communities and functions to long-term tea(Camellia sinensis L.)planting in a subtropicalregion[J].Forests,2023,14(7):1288.

[46] Hu Y,Li H,Zhou Y,et al.Illumina MiSeq sequencing investigation on the contrasting rhizosphere soil bacterial community structures in tea orchard soil under different content of aluminium[J].All Life,2023,16(1):2206544.

[47] Jamatia S K S,Chaudhuri P S.Earthworm community structure under tea plantations(Camellia sinensis)of Tripura(India)[J]. Tropical Ecology,2017,58(1):105-113.

[48] Yin J,Chen H,Duan P,et al.Soil microbial communities as potential regulators of N2O sources in highly acidic soils[J].Soil Ecology Letters,2023,5(4):1-7.

[49] Tang S,Liu Y,Zheng N,et al.Temporal variation in nutrient requirements of tea(Camellia sinensis)in China based on QUEFTS analysis[J].Scientific Reports,2020,10(1):1745.

[50] 馬立鋒,倪康,伊?xí)栽?,等.浙江茶園化肥減施增效技術(shù)模式及示范應(yīng)用效果[J].中國茶葉,2019,41(10):40-43.

[51] 吳曉榮,張蓓蓓,余云飛,等.硝化抑制劑對典型茶園土壤尿素硝化過程的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):2063-2070.

[52] Wang J,Zhang B,Tian Y,et al.A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations[J].European Journal of Soil Biology,2018,88:36-40.

[53] Jia X,Wang Y,Zhang Q,et al.Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality[J].Frontiers in Plant Science,2023,14:1179960.

[54] 朱悅?cè)铮只哿?,張譽齡,等.鉀、鎂配施改良茶園土壤酸化的效果及其作用路徑[J].生態(tài)學(xué)雜志,2023,42(7):1554-1560.

[55] Xie S,Yang F,F(xiàn)eng H,et al.Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations:evidence in nutrient contents and isotope fractionations[J].Science of The Total Environment,2020,762:143059.

[56] 吳志丹,江福英,陳玉真,等.安溪鐵觀音茶園化肥減施增效技術(shù)模式研究[J].茶葉學(xué)報,2021,62(4):179-184.

[57] Xue D,Huang X,Yao H,et al.Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J].Journal of Environmental Sciences,2010,22(8):1253-1260.

[58] Yan P,Zou Z,Zhang J,et al.Crop growth inhibited by overliming in tea plantations[J].Beverage Plant Research,2021,1(1):1-7.

[59] 吳洵.茶樹的鈣鎂營養(yǎng)及土壤調(diào)控[J].茶葉科學(xué),1994,14(2):115-121.

[60] Fung K F,Wong M H.Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation[J]. Journal of the Science of Food and Agriculture,2004,84(12):1469-1477.

[61] 余跑蘭,孫永明,李小飛,等.施用白云石粉對茶園土壤酸化及茶葉品質(zhì)與產(chǎn)量的影響[J].茶葉通訊,2020,47(1):46-51.

[62] Zhang S H,Wang Y,Hu J J,et al.Bamboo charcoal affects soil properties and bacterial community in tea plantations[J]. Open Life Sciences,2023,18(1):20220681.

[63] 趙麗芳,黃鵬武,陳翰,等.土壤調(diào)理劑與有機肥配施治理紅壤茶園土壤酸化與培育地力的效果[J].浙江農(nóng)業(yè)科學(xué),2022,63(11):2692-2695.

基本信息

DOI: 10.11838/sfsc.1673-6257.23492

基金信息

貴州省科技計劃項目(黔科合支撐〔2022〕1Y110, 〔2020〕1Y119);

引用信息

稿件歷史

收稿日期: 2023-08-18
錄用日期: 2023-12-15

參考文獻

[1] van Breemen N,Driscoll C T,Mulder J.Acidic deposition and internal proton sources in acidification of soils and waters[J]. Nature,1984,307(5952):599-604.

[2] Krug E C,F(xiàn)rink C R.Acid rain on Acid soil:a new perspective[J]. Science,1983,221(4610):520-525.

[3] Guo J H,Liu X J,Zhang Y,et al.Significant acidification in major Chinese croplands[J].Science,2010,327:1008-1010.

[4] Fan L,Han W.Soil respiration after forest conversion to tea gardens:a chronosequence study[J].Catena,2020,190:104532.

[5] Yan P,Wu L Q,Wang D H,et al.Soil acidification in Chinese tea plantations[J].Science of The Total Environment,2020,715:136963.

[6] Wang H,Xu R K,Wang N,et al.Soil acidification of alfisols as influenced by tea cultivation in eastern China[J]. Pedosphere,2010,20(6):799-806.

[7] 楊廣容,王秀青,謝瑾,等.云南古茶園和現(xiàn)代茶園土壤養(yǎng)分與茶葉品質(zhì)成分關(guān)系的研究[J].茶葉科學(xué),2015,35(6):574-582.

[8] Yan P,Chen S,F(xiàn)an L C,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

[9] Alekseeva T,Alekseev A,Xu R K,et al.Effect of soil acidification induced by a tea plantation on chemical and mineralogical properties of alfisols in eastern China[J]. Environmental Geochemistry and Health,2011,33(2):137-148.

[10] Li S Y,Li H X,Yang C L,et al.Rates of soil acidification in tea plantations and possible causes[J].Agriculture,Ecosystems & Environment,2016,233:60-66.

[11] 倪康,廖萬有,伊?xí)栽疲龋覈鑸@施肥現(xiàn)狀與減施潛力分析[J].植物營養(yǎng)與肥料學(xué)報,2019,25(3):421-432.

[12] Chen S,Liang Z,Webster R,et al.A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution[J]. Science of the Total Environment,2019,655:273-283.

[13] Yang X D,Ni K,Shi Y,et al.Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China[J].Agriculture,Ecosystems & Environment,2018,252:74-82.

[14] Jiang W,Shen J,Li Y,et al.Contrasting change trends in dry and wet nitrogen depositions during 2011 to 2020:Evidence from an agricultural catchment in subtropical central China[J].Science of The Total Environment,2024,907:168094.

[15] Wan Q,Xu R Q,Li X H.Proton release by tea plant(Camellia sinensis L.)roots as affected by nutrient solution concentration and pH[J].Plant,Soil and Enviroment,2012,58(9):429-434.

[16] Wang Q,Mi Y,Yang Y,et al.Aluminum-enhanced proton release associated with plasma membrane H+-adenosine triphosphatase activity and excess cation uptake in tea(Camellia sinensis)plant roots[J].Pedosphere,2018,28(5):804-813.

[17] Pramanik P,Phukan M,Ghosh S,et al.Pruned tea bushes secrete more root exudates to influence microbiological properties in soil[J].Archives of Agronomy and Soil Science,2018,64(8):1172-1180.

[18] Ruan J,Ma L,Shi Y,et al.Effects of litter incorporation and nitrogen fertilization on the contents of extractable aluminium in the rhizosphere soil of tea plant(Camallia sinensis L.O.Kuntze)[J]. Plant and soil,2004,263:283-296.

[19] Hu X F,Chen F S,Wine M L,et al.Increasing acidity of rain in subtropical tea plantation alters aluminum and nutrient distributions at the root-soil interface and in plant tissues[J]. Plant and Soil,2017,417:161-274.

[20] Liu Y,Zhang M,Li Y,et al.Influence of nitrogen fertilizer application on soil acidification characteristics of tea plantations in karst areas of southwest China[J].Agriculture,2023,13(4):849.

[21] Yang X,Ma L,Ji L,et al.Long-term nitrogen fertilization indirectly affects soil fungi community structure by changing soil and pruned litter in a subtropical tea(Camellia sinensis L.)plantation in China[J].Plant and Soil,2019,444(1-2):409-426.

[22] Wang H,Zhang H,Zhao Y,et al.Soil acidification of alfisols influenced by nitrate and ammonium nitrogen level in tea plantation [J].International Journal of Agricultural and Biological Engineering,2018,11(4):168-172.

[23] Ruan J Y,Zhang F S,Wong M H.Effect of nitrogen form and phosphorus source on the growth,nutrient uptake and rhizosphere soil property of Camellia sinensis L.[J].Plant and Soil,2000,223(1-2):65-73.

[24] Wang J,Tu X,Zhang H,et al.Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil [J].Science of The Total Environment,2020,747:141340.

[25] Zhu X,Shen J,Li Y,et al.Nitrogen emission and deposition budget in an agricultural catchment in subtropical central China[J]. Environmental Pollution,2021,289:117870.

[26] Shen J,Li Y,Liu X,et al.Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J].Atmospheric Environment,2013,67:415-424.

[27] Hu X F,Wu A Q,Wang F C,et al.The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg,Al,Ca,N,and P in tea plants of a subtropical plantation[J]. Environmental Monitoring and Assessment,2019,191:1-14.

[28] Yu H,He N,Wang Q,et al.Development of atmospheric acid deposition in China from the 1990s to the 2010s[J]. Environmental Pollution,2017,231:182-190.

[29] Xu Q,Wang Y,Ding Z,et al.Aluminum induced physiological and proteomic responses in tea(Camellia sinensis)roots and leaves[J].Plant Physiology and Biochemistry,2017,115:141-151.

[30] 王海斌,陳曉婷,丁力,等.福建省安溪縣茶園土壤酸化對茶樹產(chǎn)量及品質(zhì)的影響[J].應(yīng)用與環(huán)境生物學(xué)報,2018,24(6):1398-1403.

[31] Li Y,Huang J,Song X,et al.An RNA-Seq transcriptome analysis revealing novel insights into aluminum tolerance and accumulation in tea plant[J].Planta,2017,246(1):91-103.

[32] Fung K F,Wong M H.Effects of soil pH on the uptake of Al,F(xiàn) and other elements by tea plants[J].Journal of the Science of Food and Agriculture,2002,82(1):146-152.

[33] Lin S,Liu Z,Wang Y,et al.Soil acidification associated with changes in inorganic forms of N reduces the yield of tea(Camellia sinensis)[J].Archives of Agronomy and Soil Science,2023,69(9):1660-1673.

[34] Zhang M,Zhou C,Huang C.Relationship between extractable metals in acid soils and metals taken up by tea plants[J]. Communications in Soil Science and Plant Analysis,2006,37(3-4):347-361.

[35] Zhang L,Li Q,Ma L,et al.Characterization of fluoride uptake by roots of tea plants(Camellia sinensis L.O.Kuntze)[J]. Plant and Soil,2013,366(1-2):659-669.

[36] Ding L,Hong L,Wang Y H,et al.Allelopathic effects of soil pH on nitrogen uptake,its utilization efficiency and soil enzymes in tea bush soil[J].Allelopathy Journal,2022,56(2):181-192.

[37] Wang Y H,Hong L,Wang Y C,et al.Effects of soil nitrogen and pH in tea plantation soil on yield and quality of tea leaves[J]. Allelopathy Journal,2022,55(1):51-60.

[38] Yan P,Shen C,F(xiàn)an L,et al.Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil[J]. Agriculture,Ecosystems & Environment,2018,254:20-25.

[39] Zhang Y Y,Zhang J B,Chapman S J,et al.Tea plantation affects soil nitrogen transformations in subtropical China[J]. Journal of Soils and Sediments,2020,20(9):1-11.

[40] Hayatsu M.The lowest limit of pH for nitrification in tea soil and isolation of an acidophilic ammonia oxidizing bacterium[J].Soil Science & Plant Nutrition,1993,39(2):219-226.

[41] Han W,Kemmitt S J,Brookes P C.Soil microbial biomass and activity in Chinese tea gardens of varying stand age and productivity[J].Soil Biology & Biochemistry,2007,39(7):1468-1478.

[42] Yu H,Han X,Zhang X,et al.Fertilizer-induced N2O and NO emissions in tea gardens and the main controlling factors:A recent three-decade data synthesis[J].Science of The Total Environment,2023,871:162054.

[43] 麻萬諸,朱康瑩,卓志清.酸化對茶園土壤礦物轉(zhuǎn)變及供鉀能力的影響[J].茶葉科學(xué),2023,43(1):17-26.

[44] Wen B,Li L,Duan Y,et al.Zn,Ni,Mn,Cr,Pb and Cu in soil-tea ecosystem:The concentrations,spatial relationship and potential control[J].Chemosphere,2018,204:92-100.

[45] ZhengX,Wu Y,Xu A,et al.Response ofsoil microbial communities and functions to long-term tea(Camellia sinensis L.)planting in a subtropicalregion[J].Forests,2023,14(7):1288.

[46] Hu Y,Li H,Zhou Y,et al.Illumina MiSeq sequencing investigation on the contrasting rhizosphere soil bacterial community structures in tea orchard soil under different content of aluminium[J].All Life,2023,16(1):2206544.

[47] Jamatia S K S,Chaudhuri P S.Earthworm community structure under tea plantations(Camellia sinensis)of Tripura(India)[J]. Tropical Ecology,2017,58(1):105-113.

[48] Yin J,Chen H,Duan P,et al.Soil microbial communities as potential regulators of N2O sources in highly acidic soils[J].Soil Ecology Letters,2023,5(4):1-7.

[49] Tang S,Liu Y,Zheng N,et al.Temporal variation in nutrient requirements of tea(Camellia sinensis)in China based on QUEFTS analysis[J].Scientific Reports,2020,10(1):1745.

[50] 馬立鋒,倪康,伊?xí)栽疲龋憬鑸@化肥減施增效技術(shù)模式及示范應(yīng)用效果[J].中國茶葉,2019,41(10):40-43.

[51] 吳曉榮,張蓓蓓,余云飛,等.硝化抑制劑對典型茶園土壤尿素硝化過程的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2017,36(10):2063-2070.

[52] Wang J,Zhang B,Tian Y,et al.A soil management strategy for ameliorating soil acidification and reducing nitrification in tea plantations[J].European Journal of Soil Biology,2018,88:36-40.

[53] Jia X,Wang Y,Zhang Q,et al.Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality[J].Frontiers in Plant Science,2023,14:1179960.

[54] 朱悅?cè)?,林慧凌,張譽齡,等.鉀、鎂配施改良茶園土壤酸化的效果及其作用路徑[J].生態(tài)學(xué)雜志,2023,42(7):1554-1560.

[55] Xie S,Yang F,F(xiàn)eng H,et al.Organic fertilizer reduced carbon and nitrogen in runoff and buffered soil acidification in tea plantations:evidence in nutrient contents and isotope fractionations[J].Science of The Total Environment,2020,762:143059.

[56] 吳志丹,江福英,陳玉真,等.安溪鐵觀音茶園化肥減施增效技術(shù)模式研究[J].茶葉學(xué)報,2021,62(4):179-184.

[57] Xue D,Huang X,Yao H,et al.Effect of lime application on microbial community in acidic tea orchard soils in comparison with those in wasteland and forest soils[J].Journal of Environmental Sciences,2010,22(8):1253-1260.

[58] Yan P,Zou Z,Zhang J,et al.Crop growth inhibited by overliming in tea plantations[J].Beverage Plant Research,2021,1(1):1-7.

[59] 吳洵.茶樹的鈣鎂營養(yǎng)及土壤調(diào)控[J].茶葉科學(xué),1994,14(2):115-121.

[60] Fung K F,Wong M H.Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation[J]. Journal of the Science of Food and Agriculture,2004,84(12):1469-1477.

[61] 余跑蘭,孫永明,李小飛,等.施用白云石粉對茶園土壤酸化及茶葉品質(zhì)與產(chǎn)量的影響[J].茶葉通訊,2020,47(1):46-51.

[62] Zhang S H,Wang Y,Hu J J,et al.Bamboo charcoal affects soil properties and bacterial community in tea plantations[J]. Open Life Sciences,2023,18(1):20220681.

[63] 趙麗芳,黃鵬武,陳翰,等.土壤調(diào)理劑與有機肥配施治理紅壤茶園土壤酸化與培育地力的效果[J].浙江農(nóng)業(yè)科學(xué),2022,63(11):2692-2695.

相關(guān)知識

我國土壤污染防治現(xiàn)狀分析及未來路徑研究
土壤污染的途徑!
我國土壤污染及其防治
福建鐵觀音茶園土壤中鉛、鎘、砷、鉻、汞、銅、氟的環(huán)境質(zhì)量現(xiàn)狀分析
土壤污染防治確保園林綠化健康發(fā)展
磷酸鹽類土壤調(diào)理劑的環(huán)境行為及效應(yīng).docx
生態(tài)環(huán)境部有關(guān)負(fù)責(zé)人就農(nóng)用地、建設(shè)用地土壤污染風(fēng)險管控標(biāo)準(zhǔn)有關(guān)問題答問
土壤污染及其防治.ppt
治理“生病”土壤 讓茶園回歸自然
土壤環(huán)境污染

網(wǎng)址: 我國茶園土壤酸化現(xiàn)狀、問題及調(diào)控途徑 http://m.gysdgmq.cn/newsview1883790.html

推薦資訊